

ARDEN_V3.0_STU_R1_2023JUL

The Arden Syntax for Medical Logic Systems,
Version 3.0

Release 1 (Universal Realm)

Standard for Trial Use

October 2023

Publication of this standard for trial use (STU) has been approved by Health Level Seven International
(HL7). This STU is not an accredited American National Standard. The feedback period on the use of this
STU shall end 24 months from the date of publication. For information on submitting feedback see
http://www.hl7.org/permalink/?SpecificationFeedback.

Following this 24-month feedback period, this STU, revised as necessary, may be resubmitted for further
feedback or submitted to a normative ballot in preparation for approval by ANSI as an American National
Standard. Implementations of this STU shall be viable throughout any subsequent normative ballot
process and for up to six months after publication of the relevant normative standard.

Copyright © 2022 Health Level Seven International ® ALL RIGHTS RESERVED. The reproduction of this material in
any form is strictly forbidden without the written permission of the publisher. HL7 International and Health Level
Seven are registered trademarks of Health Level Seven International. Reg. U.S. Pat & TM Off.

http://www.hl7.org/permalink/?SpecificationFeedback

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 1

Revision date: 10/4/2023 Print date: 10/4/2023

IMPORTANT NOTES:

HL7 licenses its standards and select IP free of charge. If you did not acquire a free license from HL7 for this
document, you are not authorized to access or make any use of it. To obtain a free license, please visit
http://www.HL7.org/implement/standards/index.cfm.
If you are the individual that obtained the license for this HL7 Standard, specification or other freely licensed
work (in each and every instance "Specified Material"), the following describes the permitted uses of the Material.
A. HL7 INDIVIDUAL, STUDENT AND HEALTH PROFESSIONAL MEMBERS, who register and agree to the terms
of HL7’s license, are authorized, without additional charge, to read, and to use Specified Material to develop and sell
products and services that implement, but do not directly incorporate, the Specified Material in whole or in part
without paying license fees to HL7.
INDIVIDUAL, STUDENT AND HEALTH PROFESSIONAL MEMBERS wishing to incorporate additional items of
Special Material in whole or part, into products and services, or to enjoy additional authorizations granted to HL7
ORGANIZATIONAL MEMBERS as noted below, must become ORGANIZATIONAL MEMBERS of HL7.
B. HL7 ORGANIZATION MEMBERS, who register and agree to the terms of HL7's License, are authorized, without
additional charge, on a perpetual (except as provided for in the full license terms governing the Material), non-
exclusive and worldwide basis, the right to (a) download, copy (for internal purposes only) and share this Material
with your employees and consultants for study purposes, and (b) utilize the Material for the purpose of developing,
making, having made, using, marketing, importing, offering to sell or license, and selling or licensing, and to otherwise
distribute, Compliant Products, in all cases subject to the conditions set forth in this Agreement and any relevant
patent and other intellectual property rights of third parties (which may include members of HL7). No other license,
sublicense, or other rights of any kind are granted under this Agreement.
C. NON-MEMBERS, who register and agree to the terms of HL7’s IP policy for Specified Material, are authorized,
without additional charge, to read and use the Specified Material for evaluating whether to implement, or in
implementing, the Specified Material, and to use Specified Material to develop and sell products and services that
implement, but do not directly incorporate, the Specified Material in whole or in part.
NON-MEMBERS wishing to incorporate additional items of Specified Material in whole or part, into products and
services, or to enjoy the additional authorizations granted to HL7 ORGANIZATIONAL MEMBERS, as noted above,
must become ORGANIZATIONAL MEMBERS of HL7.

Please see http://www.HL7.org/legal/ippolicy.cfm for the full license terms governing the Material.

Ownership. Licensee agrees and acknowledges that HL7 owns all right, title, and interest, in and to the Trademark.
Licensee shall take no action contrary to, or inconsistent with, the foregoing.

Licensee agrees and acknowledges that HL7 may not own all right, title, and interest, in and to the Materials
and that the Materials may contain and/or reference intellectual property owned by third parties (“Third Party
IP”). Acceptance of these License Terms does not grant Licensee any rights with respect to Third Party IP.
Licensee alone is responsible for identifying and obtaining any necessary licenses or authorizations to
utilize Third Party IP in connection with the Materials or otherwise. Any actions, claims or suits brought by a
third party resulting from a breach of any Third Party IP right by the Licensee remains the Licensee’s liability.

Following is a non-exhaustive list of third-party terminologies that may require a separate license:

Terminology Owner/Contact

Current Procedures Terminology (CPT)
code set

American Medical Association
https://www.ama-assn.org/practice-management/cpt-licensing

SNOMED CT® SNOMED CT® International http://www.snomed.org/snomed-ct/get-
snomed-ct or info@ihtsdo.org

Logical Observation Identifiers Names &
Codes (LOINC®)

Regenstrief Institute

International Classification of Diseases
(ICD) codes

World Health Organization (WHO)

NUCC Health Care Provider Taxonomy
code set

American Medical Association. Please see www.nucc.org. AMA
licensing contact: 312-464-5022 (AMA IP services)

Arden Syntax for Medical Logic Systems

Page 2 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

The first version of this standard was developed under the auspices of the American Society for Testing and

Materials (ASTM) and published in April 1992 as ASTM E1460-92. Subsequent versions, Version 2, 2.1, 2.5, 2.6,

2.7, 2.8 and Version 2.9 were developed and published by Health Level Seven International, Inc. (HL7). These

versions were accepted as standards by the American National Standards Institute (ANSI) and The International

Standards Organization (ISO). The previous standard, Version 2.10, was accepted as an ANSI standard in 2014.

This version, 3.0, represents a revision of the previous ANSI version.

Arden Syntax for
Medical Logic Systems

Work Group Co-Chair & Contributor Peter Haug, MD
University of Utah &
Intermountain Healthcare

Work Group Co-Chair & Contributor Robert A Jenders, MD, MS
Charles Drew University &
University of California, Los Angeles

Contributor Klaus-Peter Adlassnig, PhD, MSc
Medical University of Vienna &
Medexter Healthcare GmbH

Contributor Andreas Csarmann, BSc
Medexter Healthcare GmbH

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 3

Revision date: 10/4/2023 Print date: 10/4/2023

Arden Syntax for Medical Logic Systems

Page 4 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

TABLE OF CONTENTS

WHAT’S NEW IN VERSION 3.0 .. 14

1 SCOPE ... 14

2 REFERENCED DOCUMENTS ... 15
2.1 Health Level Seven Standards .. 15
2.2 ASTM Standards .. 15
2.3 ANSI Standards .. 15
2.4 ISO Standards ... 15
2.5 World Wide Web Consortium Recommendations ... 16
2.6 Unicode Standards .. 16

3 TERMINOLOGY ... 17
3.1 Definitions .. 17

3.1.1 Medical Logic Module (MLM), n .. 17
3.2 Descriptions of Terms Specific to This Standard: .. 17

3.2.1 time, n .. 17
3.2.2 time-of-day, n... 17
3.2.3 date, n ... 17
3.2.4 duration, n .. 17
3.2.5 institution, n ... 17
3.2.6 event, n ... 17

3.3 Notation Used in This Standard.. 17

4 SIGNIFICANCE AND USE .. 18

5 MLM FORMAT ... 19
5.1 File Format ... 19
5.2 Character Set .. 19
5.3 Line Break .. 19
5.4 White Space .. 19
5.5 General Layout ... 19
5.6 Categories ... 20
5.7 Slots .. 20
5.8 Slot Body Types ... 20

5.8.1 Textual Slots .. 20
5.8.2 Textual List Slots ... 20
5.8.3 Coded Slots .. 20
5.8.4 Structured Slots .. 20

5.9 MLM Termination .. 20
5.10 Case Insensitivity ... 21

6 SLOT DESCRIPTIONS ... 22
6.1 Maintenance Category .. 22

6.1.1 Title (textual, required) .. 22
6.1.2 Mlmname (coded, required) ... 22
6.1.3 Arden Syntax Version (coded, optional*) .. 22
6.1.4 Version (textual, required) ... 22
6.1.5 Institution (textual, required) ... 22
6.1.6 Author (textual list, required)... 23
6.1.7 Specialist (textual list, required) .. 23
6.1.8 Date (coded, required) ... 23
6.1.9 Validation (coded, required) .. 23

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 5

Revision date: 10/4/2023 Print date: 10/4/2023

6.2 Library Category .. 23
6.2.1 Purpose (textual, required) ... 23
6.2.2 Explanation (textual, required) .. 24
6.2.3 Keywords (textual list, required) ... 24
6.2.4 Citations (structured / textual, optional)... 24
6.2.5 Links (structured / textual, optional) .. 24

6.3 Knowledge Category .. 25
6.3.1 Type (coded, required) ... 25
6.3.2 Data (structured, required) ... 25
6.3.3 Priority (coded, optional) ... 25
6.3.4 Evoke (structured, required) .. 26
6.3.5 Logic (structured, required) ... 26
6.3.6 Action (structured, required) .. 26
6.3.7 Urgency (coded, optional) ... 26

6.4 Resources Category* .. 26
6.4.1 Default (coded, required) ... 27
6.4.2 Language (coded, required) ... 27

7 STRUCTURED SLOT SYNTAX .. 28
7.1 Tokens .. 28

7.1.1 Reserved Words ... 28
7.1.2 The ... 28
7.1.3 Case Insensitivity ... 28
7.1.4 Identifiers ... 28
7.1.5 Case Insensitivity ... 28
7.1.6 Special Symbols ... 28
7.1.7 Number Constants .. 28
7.1.8 Negative Numbers ... 29
7.1.9 Time Constants .. 29
7.1.10 Fractional Seconds ... 29
7.1.11 Time Zones .. 29
7.1.12 Constructing Times .. 29
7.1.13 String Constants ... 29
7.1.14 Internal Quotation Marks ... 29
7.1.15 Single Line Break .. 29
7.1.16 Multiple Line Breaks ... 29
7.1.17 Term Constants .. 29
7.1.18 Mapping Clauses .. 30
7.1.19 Comments .. 30
7.1.20 White Space ... 30
7.1.21 Time-of-Day Constants .. 30

7.2 Organization ... 31
7.2.1 Statements .. 31
7.2.2 Statement Termination ... 31
7.2.3 Expressions .. 31
7.2.4 Constant ... 31
7.2.5 Variable .. 31
7.2.6 Operator and Arguments .. 32
7.2.7 Variables .. 32

8 DATA TYPES .. 33
8.1 Null ... 33
8.2 Boolean ... 33
8.3 Number ... 33
8.4 Time ... 33

Arden Syntax for Medical Logic Systems

Page 6 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

8.4.1 Granularity ... 33
8.4.2 Midnight .. 33
8.4.3 Now.. 34
8.4.4 Eventtime ... 34
8.4.5 Triggertime .. 34
8.4.6 Currenttime .. 34

8.5 Duration .. 34
8.5.1 Sub-Types .. 34
8.5.2 Time and Duration Arithmetic ... 34

8.6 String .. 35
8.7 Term ... 36
8.8 List .. 36
8.9 Query Results ... 36

8.9.1 Primary Time ... 36
8.9.2 Retrieval Order .. 37
8.9.3 Data Value ... 37
8.9.4 Time Function Operator ... 37

8.10 Object ... 37
8.11 Time-of-Day ... 37
8.12 Day-of-Week .. 37
8.13 Truth Value... 38
8.14 Fuzzy Data Types ... 38

8.14.1 Fuzzy Number.. 38
8.14.2 Fuzzy Time .. 39
8.14.3 Fuzzy Duration .. 40

8.15 Applicability ... 40

9 OPERATOR DESCRIPTIONS .. 41
9.1 General Properties .. 41

9.1.1 Number of Arguments ... 41
9.1.2 Data Type Constraints.. 41
9.1.3 List Handling ... 42
9.1.4 Primary Time Handling ... 47
9.1.5 Time-of-Day Handling... 47
9.1.6 Applicability Handling... 48
9.1.7 Operator Precedence .. 48
9.1.8 Associativity .. 48
9.1.9 Parentheses... 49

9.2 List Operators ... 49
9.2.1 , (binary, left-associative) .. 49
9.2.2 , (unary, non-associative) ... 49
9.2.3 Merge (binary, left-associative) ... 49
9.2.4 Sort (unary, non-associative) ... 49
9.2.5 Add … To … [At …] (ternary, non-associative) ... 50
9.2.6 Remove … From … (binary, non-associative) .. 51

9.3 Where Operator .. 51
9.3.1 Where (binary, non-associative) .. 52

9.4 Logical Operators ... 53
9.4.1 Or (binary, left-associative) ... 53
9.4.2 And (binary, left-associative) ... 53
9.4.3 Not (unary, non-associative) .. 54

9.5 Simple Comparison Operators.. 54
9.5.1 = (binary, non-associative)... 54
9.5.2 <> (binary, non-associative) .. 55
9.5.3 < (binary, non-associative)... 55

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 7

Revision date: 10/4/2023 Print date: 10/4/2023

9.5.4 <= (binary, non-associative) .. 55
9.5.5 > (binary, non-associative)... 56
9.5.6 >= (binary, non-associative) .. 56

9.6 Is Comparison Operators .. 57
9.6.1 Is [not] Equal (binary, non-associative) ... 57
9.6.2 Is [not] Less Than (binary, non-associative) .. 57
9.6.3 Is [not] Greater Than (binary, non-associative) ... 57
9.6.4 Is [not] Less Than or Equal (binary, non-associative) ... 57
9.6.5 Is [not] Greater Than or Equal (binary, non-associative) ... 57
9.6.6 Is [not] Within ... To (ternary, non-associative) ... 57
9.6.7 Is [not] Within ... Preceding (ternary, non-associative) ... 58
9.6.8 Is [not] Within ... Following (ternary, non-associative) ... 58
9.6.9 Is [not] Within ... Surrounding (ternary, non-associative) ... 58
9.6.10 Is [not] Within Past (binary, non-associative) .. 59
9.6.11 Is [not] Within Same Day As (binary, non-associative) .. 59
9.6.12 Is [not] Before (binary, non-associative) ... 59
9.6.13 Is [not] After (binary, non-associative) .. 59
9.6.14 Is [not] In (binary, non-associative) ... 59
9.6.15 Is [not] Present (unary, non-associative) .. 60
9.6.16 Is [not] Null (unary, non-associative) .. 61
9.6.17 Is [not] Boolean (unary, non-associative) .. 61
9.6.18 Is [not] Truth Value (unary, non-associative) .. 61
9.6.19 Is [not] Linguistic Variable (unary, non-associative) ... 61
9.6.20 Is [not] Number (unary, non-associative) .. 61
9.6.21 Is [not] String (unary, non-associative) .. 61
9.6.22 Is [not] Time (unary, non-associative) ... 62
9.6.23 Is [not] Time of Day (unary, non-associative) ... 62
9.6.24 Is [not] Duration (unary, non-associative) ... 62
9.6.25 Is [not] List (unary, non-associative) ... 62
9.6.26 [not] In (binary, non-associative) ... 62
9.6.27 Is [not] Object (unary, non-associative) ... 62
9.6.28 Is [not] <Object-Type> (unary, non-associative) ... 63
9.6.29 Is [not] Fuzzy (unary, non-associative) .. 63
9.6.30 Is [not] Crisp (unary, non-associative) ... 63

9.7 Occur Comparison Operators ... 63
9.7.1 General Properties .. 63
9.7.2 Occur [not] Equal (binary, non-associative) .. 63
9.7.3 Occur [not] Within ... To (ternary, non-associative) .. 64
9.7.4 Occur [not] Within ... Preceding (ternary, non-associative) .. 64
9.7.5 Occur [not] Within ... Following (ternary, non-associative) .. 64
9.7.6 Occur [not] Within . . . Surrounding (ternary, non-associative)... 64
9.7.7 Occur [not] Within Past (binary, non-associative) ... 64
9.7.8 Occur [not] Within Same Day As (binary, non-associative) .. 64
9.7.9 Occur [not] Before (binary, non-associative) ... 64
9.7.10 Occur [not] After (binary, non-associative) ... 64
9.7.11 Occur [not] At (binary, non-associative) ... 64

9.8 String Operators ... 64
9.8.1 || (binary, left-associative) .. 64
9.8.2 Formatted With (binary, left-associative) .. 65
9.8.3 String ... (unary, right-associative) ... 66
9.8.4 Matches Pattern (binary, non-associative) ... 66
9.8.5 Length (unary, right-associative) ... 66
9.8.6 Uppercase (unary, right-associative) .. 67
9.8.7 Lowercase (unary, right-associative) ... 67
9.8.8 Trim [Left | Right] (unary, right-associative) ... 67
9.8.9 Find...[in] String...[starting at]... (ternary, right-associative) ... 67

Arden Syntax for Medical Logic Systems

Page 8 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

9.8.10 Substring … Characters [starting at …] from … (ternary, right-associative) 68
9.8.11 Localized (unary, non-associative) .. 69
9.8.12 Localized (binary, right-associative) .. 69

9.9 Arithmetic Operators .. 70
9.9.1 + (binary, left-associative) ... 70
9.9.2 + (unary, non-associative) .. 70
9.9.3 - (binary, left-associative) .. 70
9.9.4 - (unary, non-associative) ... 70
9.9.5 * (binary, left-associative) ... 71
9.9.6 / (binary, left-associative) .. 71
9.9.7 ** (binary, non-associative) ... 71

9.10 Temporal Operators .. 71
9.10.1 After (binary, non-associative) .. 71
9.10.2 Before (binary, non-associative) .. 71
9.10.3 Ago (unary, non-associative) ... 71
9.10.4 From (binary, non-associative) .. 72
9.10.5 Time of Day [of] (unary, right-associative) ... 72
9.10.6 Day of Week [of] (unary, right-associative) .. 72
9.10.7 Extract Year (unary, right-associative) .. 72
9.10.8 Extract Month (unary, right-associative) ... 72
9.10.9 Extract Day (unary, right-associative) ... 73
9.10.10 Extract Hour (unary, right-associative) .. 73
9.10.11 Extract Minute (unary, right-associative) .. 73
9.10.12 Extract Second (unary, right-associative) .. 73
9.10.13 Replace Year [of] … With (binary, right-associative) ... 73
9.10.14 Replace Month [of] … With (binary, right-associative) .. 74
9.10.15 Replace Day [of] …With (binary, right-associative) ... 74
9.10.16 Replace Hour [of] … With (binary, right-associative)... 74
9.10.17 Replace Minute [of] … With (binary, right-associative) ... 75
9.10.18 Replace Second [of] … With (binary, right-associative) ... 75

9.11 Duration Operators ... 75
9.11.1 Year (unary, non-associative) .. 76
9.11.2 Month (unary, non-associative) ... 76
9.11.3 Week (unary, non-associative) ... 76
9.11.4 Day (unary, non-associative) ... 76
9.11.5 Hour (unary, non-associative) .. 76
9.11.6 Minute (unary, non-associative) .. 76
9.11.7 Second (unary, non-associative) .. 76

9.12 Aggregation Operators ... 76
9.12.1 General Properties .. 76
9.12.2 Count (unary, right-associative) ... 77
9.12.3 Exist (unary, right-associative) .. 77
9.12.4 Average (unary, right-associative) ... 77
9.12.5 Median (unary, right-associative) .. 77
9.12.6 Sum (unary, right-associative) ... 78
9.12.7 Stddev (unary, right-associative) ... 78
9.12.8 Variance (unary, right-associative) .. 78
9.12.9 Minimum (unary, right-associative) .. 78
9.12.10 Maximum (unary, right-associative) .. 78
9.12.11 Last (unary, right-associative).. 79
9.12.12 First (unary, right-associative) ... 79
9.12.13 Any [IsTrue] (unary, right-associative).. 79
9.12.14 All [AreTrue] (unary, right-associative) .. 79
9.12.15 No [IsTrue] (unary, right-associative).. 80
9.12.16 Latest (unary, right-associative) ... 80
9.12.17 Earliest (unary, right-associative) .. 80

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 9

Revision date: 10/4/2023 Print date: 10/4/2023

9.12.18 Element (binary) .. 81
9.12.19 Extract Characters ... (unary, right-associative) ... 81
9.12.20 Seqto (binary, non-associative) .. 81
9.12.21 Reverse (unary, right-associative) .. 81
9.12.22 Index Extraction Aggregation Operators ... 81

9.13 Query Aggregation Operators .. 82
9.13.1 General Properties .. 82
9.13.2 Nearest ... From (binary, right-associative) .. 83
9.13.3 Index Nearest ... From (binary, right-associative) .. 83
9.13.4 Index Of … From … (binary, right-associative).. 83
9.13.5 At Least ... [IsTrue|AreTrue] From … (binary, right-associative) ... 84
9.13.6 At Most ... [IsTrue|AreTrue] From … (binary, right-associative) ... 84
9.13.7 Slope (unary, right-associative) ... 85

9.14 Transformation Operators .. 85
9.14.1 General Properties .. 85
9.14.2 Minimum ... From (binary, right-associative) .. 85
9.14.3 Maximum ... From (binary, right-associative) ... 85
9.14.4 First ... From (binary, right-associative) .. 86
9.14.5 Last ... From (binary, right-associative) ... 86
9.14.6 Sublist …Elements [Starting at …] From … (ternary, right-associative) 86
9.14.7 Increase (unary, right-associative) ... 87
9.14.8 Decrease (unary, right-associative) .. 87
9.14.9 % Increase (unary, right-associative) ... 87
9.14.10 % Decrease (unary, right-associative).. 88
9.14.11 Earliest ... From (binary, right-associative) .. 88
9.14.12 Latest ... From (binary, right-associative) .. 88
9.14.13 Index Extraction Transformation Operators .. 89

9.15 Query Transformation Operator ... 89
9.15.1 General Properties .. 89
9.15.2 Interval (unary, right-associative) .. 90

9.16 Numeric Function Operators .. 90
9.16.1 Arccos (unary, right-associative) ... 90
9.16.2 Arcsin (unary, right-associative) .. 90
9.16.3 Arctan (unary, right-associative).. 90
9.16.4 Cosine (unary, right-associative) ... 90
9.16.5 Sine (unary, right-associative) ... 90
9.16.6 Tangent (unary, right-associative) ... 90
9.16.7 Exp (unary, right-associative) .. 90
9.16.8 Log (unary, right-associative) .. 91
9.16.9 Log10 (unary, right-associative) .. 91
9.16.10 Int (unary, right-associative) .. 91
9.16.11 Floor (unary, right-associative) .. 91
9.16.12 Ceiling (unary, right-associative) ... 91
9.16.13 Truncate (unary, right-associative) .. 91
9.16.14 Round (unary, right-associative) .. 91
9.16.15 Abs (unary, right-associative) .. 92
9.16.16 Sqrt (unary, right-associative) .. 92

9.17 Time Function Operator ... 92
9.17.1 Time (unary, right-associative) .. 92
9.17.2 Time of Objects ... 92
9.17.3 Attime (binary, right-associative) .. 93

9.18 Object Operators ... 93
9.18.1 Dot (binary, right-associative) ... 93
9.18.2 Clone (unary, right-associative) ... 94
9.18.3 Extract Attribute Names ... (unary, right-associative) .. 94
9.18.4 Attribute … From … (binary, right-associative) ... 95

Arden Syntax for Medical Logic Systems

Page 10 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

9.19 Fuzzy Operators ... 95
9.19.1 Fuzzy Set … (unary, right-associative) .. 95
9.19.2 Fuzzified By (binary, non-associative) .. 95
9.19.3 Defuzzified … (unary, right-associative) ... 96
9.19.4 Applicability [of] … (unary, non-associative) ... 96
9.19.5 Applicability of Objects ... 96

9.20 Type Conversion Operator ... 97
9.20.1 As Number (unary, non-associative) ... 97
9.20.2 As Time (unary, non-associative) .. 97
9.20.3 As String (unary, non-associative) ... 97
9.20.4 As Truth Value (unary, non-associative) ... 98

10 LOGIC SLOT ... 99
10.1 Purpose ... 99
10.2 Logic Slot Statements ... 99

10.2.1 Assignment Statement ... 99
10.2.2 If-Then Statement .. 101
10.2.3 Switch-Case Statement .. 105
10.2.4 Conclude Statement ... 107
10.2.5 Call Statement .. 107
10.2.6 While Loop .. 110
10.2.7 For Loop .. 111
10.2.8 New Statement ... 111

10.3 Logic Slot Usage .. 112

11 DATA SLOT .. 113
11.1 Purpose ... 113
11.2 Data Slot Statements... 113

11.2.1 Read Statement .. 113
11.2.2 Read As Statement ... 115
11.2.3 Event Statement ... 116
11.2.4 MLM Statement ... 117
11.2.5 Argument Statement .. 117
11.2.6 Message Statement .. 118
11.2.7 Message As Statement ... 118
11.2.8 Destination Statement .. 118
11.2.9 Destination As Statement ... 119
11.2.10 Assignment Statement ... 119
11.2.11 If-Then Statement .. 119
11.2.12 Switch-Case Statement .. 119
11.2.13 Call Statement .. 119
11.2.14 While Loop .. 119
11.2.15 For Loop .. 119
11.2.16 Interface Statement .. 119
11.2.17 Object Statement .. 120
11.2.18 Linguistic Variable Statement .. 120
11.2.19 New Statement ... 121
11.2.20 Include Statement .. 121

11.3 Data Slot Usage .. 121

12 FHIR-ENABLED DATA ACCESS ... 122
12.1 Introduction .. 122
12.2 Supported FHIR Resources .. 122

12.2.1 Arden-FHIR Objects .. 122
12.3 Patient-Oriented .. 123

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 11

Revision date: 10/4/2023 Print date: 10/4/2023

12.4 Primary Time from FHIR Resources .. 123
12.5 Pre-Defined Resources ... 123

12.5.1 Pre-defined Objects .. 123
12.5.2 Environment Variables .. 123
12.5.3 FHIR Valueset type variable .. 125

12.6 Filter Parameters – The WHERE Clause .. 126
12.6.1 FHIR in the READ AS … WHERE … Statement Part ... 126
12.6.2 AND, OR, NOT Operations ... 127
12.6.3 Base Resource .. 127
12.6.4 Encounter Resource ... 127
12.6.5 Observation Resource .. 128
12.6.6 Condition Resource .. 129
12.6.7 Patient Resource .. 130

12.7 Examples .. 131
12.7.1 Service/Resource Definitions ... 131
12.7.2 Value Sets .. 131
12.7.3 Observation .. 131
12.7.4 Condition ... 132
12.7.5 Encounter ... 132
12.7.6 Patient .. 133
12.7.7 AND Parameter .. 133
12.7.8 OR Parameter ... 133
12.7.9 NOT Parameter .. 133

13 ACTION SLOT .. 135
13.1 Purpose ... 135
13.2 Action Slot Statements ... 135

13.2.1 Write Statement ... 135
13.2.2 Return Statement .. 136
13.2.3 If-then Statement .. 136
13.2.4 Switch-Case Statement .. 136
13.2.5 Call Statement .. 136
13.2.6 While Loop .. 137
13.2.7 For Loop .. 137
13.2.8 Assignment Statement ... 137

13.3 Action Slot Usage ... 137

14 EVOKE SLOT ... 138
14.1 Purpose ... 138

14.1.1 Occurrence of Some Event .. 138
14.1.2 A Time Delay After an Event .. 138
14.1.3 Periodically After an Event .. 138
14.1.4 A Constant Time Trigger ... 138
14.1.5 A Constant Periodic Time Trigger ... 138

14.2 Events ... 138
14.2.1 Event Properties ... 138
14.2.2 Time of Events ... 138
14.2.3 Declaration of Events ... 138

14.3 Evoke Slot Statements .. 139
14.3.1 Simple Trigger Statement .. 139
14.3.2 Operation ... 139
14.3.3 Delayed Event Trigger Statement .. 139
14.3.4 Constant Time Trigger Statement .. 140
14.3.5 Periodic Event Trigger Statement .. 141
14.3.6 Constant Periodic Time Trigger Statement .. 142

Arden Syntax for Medical Logic Systems

Page 12 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

14.4 Evoke Slot Usage ... 142

A1 FORMAL REPRESENTATION .. 143
A1.1 Backus-Naur Form ... 143
A1.2 XML Schema for MLMs ... 169

A1.2.1 Graphic Representation of Schema .. 169
A1.2.2 Textual Schema .. 170
A1.2.3 XML Transform ... 193
A1.2.4 Example MLM ... 227

A2 RESERVED WORDS .. 231

A3 SPECIAL SYMBOLS .. 233

A4 OPERATOR PRECEDENCE AND ASSOCIATIVITY ... 234

A5 FORMAT SPECIFICATION (SEE 9.8.2) ... 239

A6 OBJECTS IN ARDEN SYNTAX .. 242
A6.1 Rationale .. 242
A6.2 Object Details .. 242
A6.3 Object Identity ... 243
A6.4 Objects In Expressions .. 243
A6.5 Creating Objects .. 243

X1 LANGUAGE AND COUNTRY CODES FOR HL7 INTERNATIONAL AFFILIATE COUNTRIES............ 245
X1.1 Introduction .. 245
X1.2 Language Codes ... 245
X1.3 Country Codes .. 245

X2 SAMPLE MLMS ... 247
X2.1 Data Interpretation MLM ... 247
X2.2 Research Study Screening MLM .. 249
X2.3 Contraindication Alert MLM.. 251
X2.4 Management Suggestion MLM .. 252
X2.5 Monitoring MLM ... 254
X2.6 Management Suggestion MLM .. 255
X2.7 MLM Translated from CARE .. 256
X2.8 MLM Using While Loop .. 258
X2.9 MLM Fever Calculation – Crisp .. 259
X2.10 MLM Fever Calculation – Fuzzy Simulation ... 260
X2.11 MLM Fever Calculation – Fuzzy Logic ... 262
X2.12 MLM for Doses Calculation ... 263

X3 SUMMARY OF CHANGES.. 265
X3.1 Summary of Changes from the 1992 Standard (Version 1) to Version 2 ... 265
X3.2 Summary of Changes from Version 2 to Version 2.1 ... 266
X3.3 Summary of Changes from Version 2.1 to Version 2.5 .. 267
X3.4 Summary of Changes from Version 2.5 to 2.6 ... 269
X3.5 Summary of Changes from Version 2.6 to 2.7 ... 270
X3.6 Summary of Editorial Corrections of ANSI/HL7 Arden V2.7-2008 December 10, 2008 271
X3.7 Summary of Changes from Version 2.7 with Editorial Corrections to 2.8 ... 272
X3.8 Summary of Changes from Version 2.8 to 2.9 ... 277
X3.9 Summary of Changes from Version 2.9 to 2.10 ... 278
X3.10 Summary of Changes from Version 2.10 to 3.0 ... 279

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 13

Revision date: 10/4/2023 Print date: 10/4/2023

REFERENCES .. 280

Arden Syntax for Medical Logic Systems

Page 14 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

What’s New in Version 3.0

The principal change of version 3.0 is the addition of syntax to support HL7’s Fast Healthcare Interoperability

Resources (FHIR) standards. The document describes and illustrates the syntax needed to access data through

services consistent with the FHIR 4.3.0 release. The added syntax (and the correlation of this new syntax with that in

version 2.10) is intended to extend the functionality of the Arden standard without breaking backward compatibility.

Changes to version 2.10 now reflected in version 3.0:

• Section 12 in this document contains a description of the Arden approach to incorporation of the HL7

FHIR standard for access to the relevant data. The preference is to focus on FHIR resources that have

become normative, but there are several data types that are consistently found in Arden MLMs that are

reflected in normative resources; these are discussed and the Arden approach is illustrated.

1 SCOPE

This specification covers the sharing of computerized health knowledge bases among personnel, information

systems, and institutions. The scope has been limited to those knowledge bases that can be represented as a set of

discrete modules. Each module, referred to as a Medical Logic Module (MLM), contains sufficient knowledge to

make a single decision. Contraindication alerts, management suggestions, data interpretations, treatment protocols,

and diagnosis scores are examples of the health knowledge that can be represented using MLMs. Each MLM also

contains management information to help maintain a knowledge base of MLMs and links to other sources of

knowledge. Health personnel can create MLMs directly using this format, and the resulting MLMs can be used

directly by an information system that conforms to this specification.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 15

Revision date: 10/4/2023 Print date: 10/4/2023

2 REFERENCED DOCUMENTS

2.1 Health Level Seven Standards1

HL7 Version 2.3

HL7 Version 3

HL7 FHIR Version 4.3.02

2.2 ASTM Standards3

E 1238 Specification for Transferring Clinical Laboratory Data Messages Between

Independent Computer Systems

E 1384 Guide for Content and Structure of an Automated Primary Record of Care

2.3 ANSI Standards4

ANSI X3.4-1986 Coded Character Sets-American National Standard Code for Information

Interchange (7-bit ASCII)

ANSI/ISO 9899-1999 Programming Language C

ANSI/ISO/IEC 9075-2003 Information technology – Database languages – SQL

ANSI/NISO Z39.88-2004 The OpenURL Framework for Context-Sensitive Services

2.4 ISO Standards5

ISO 8601:2004 Data Elements and Interchange Formats-Information Interchange

(representation of dates and times)

ISO 88599:1998 Latin-1 Coded Character Set

ISO/IEC 9075 – 2003 Information technology – Database languages – SQL

ISO 8879:1986 Information processing – Text and office systems – Standard Generalized

Markup Language (SGML)

ISO 639-1:2002 Codes for the representation of names of languages – Part 1: Alpha-2 code

ISO 3166-1:1997 Codes for the representation of names of countries and their subdivisions.

ISO/IEC 10646:2003 Information technology – Universal Multiple-Octet Coded Character Set

(UCS)

1 Available from Health Level Seven, Inc.
3300 Washtenaw Ave, Suite 227, Ann Arbor, MI 48104, USA. www.hl7.org

2 HL7 FHIR (https://hl7.org/FHIR/R4B)

3 Annual Book of ASTM Standards, Vol 14.01. Available from ASTM International,
100 Barr Harbor Drive, West Conshohocken, PA19428-2959, USA. www.astm.org

4 Available from American National Standards Institute,
1430 Broadway, New York, NY 10018, USA. www.ansi.org

5 Available from ISO,
1 Rue de Varembe, Case Postale 56, CH 1211, Geneve, Switzerland. www.iso.ch

Arden Syntax for Medical Logic Systems

Page 16 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

2.5 World Wide Web Consortium Recommendations6

Extensible Markup Language (XML) 1.0 (Third Edition) 2004-02-04

Extensible Markup Language (XML) 1.1 2004-02-04

2.6 Unicode Standards7

Unicode 5.0

6 Available from World Wide Web Consortium (W3C).
MIT, 32 Vassar Street, Room 32-G515, Cambridge, MA 02139 USA or
ERCIM, 2004, route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex France. www.w3c.org.

7 Available from The Unicode Consortium.
P.O. Box 391476, Mountain View, CA 94039-1476, U.S.A. www.unicode.org.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 17

Revision date: 10/4/2023 Print date: 10/4/2023

3 TERMINOLOGY

3.1 Definitions

3.1.1 Medical Logic Module (MLM), n

an independent unit in a health knowledge base. Each MLM contains maintenance information, links to

other sources of knowledge, and enough logic to make a single health decision.

3.2 Descriptions of Terms Specific to This Standard:

3.2.1 time, n

a timestamp, it includes both a date and a time-of-day.

3.2.2 time-of-day, n

hours, minutes, seconds, and possibly, fractions of seconds past midnight.

3.2.3 date, n

Gregorian year, month, and day.

3.2.4 duration, n

a period of time (for example, 3 days) that has no particular start or end point.

3.2.5 institution, n

a health facility of any size that will provide automated decision support or quality assurance.

3.2.6 event, n

a clinically meaningful change in state. This is often, but not always, reflected by a change in the clinical

database. For example, ordering a medication is an event that could update the clinical database; when the

stop time of the medication order is passed, the stopping of the medication would be an event, even though

there might not be any change to the database.

3.3 Notation Used in This Standard

Throughout this standard, the location for optional elements is noted by placing the optional elements

inside square brackets ([]). This is not to be confused with the element operator [] (see Section 9.12.18).

Thus, is [not] equal means that is equal and is not equal are both valid constructs. The two most common

optional elements are not and of.

Arden Syntax for Medical Logic Systems

Page 18 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

4 SIGNIFICANCE AND USE

Decision support systems have been used for health care successfully for many years, and several institutions have

assembled large knowledge bases. There are many conceptual similarities among these knowledge bases.

Unfortunately, the syntax of each knowledge base is different. Since no one institution will ever define a complete

health knowledge base, it will be necessary to share knowledge artifacts among institutions. A number of efforts

have been instituted to increase the accessiblity of clinical knowledge resources, notably the Mobilizing Computable

Biomedical Knowledge project.8

Many obstacles to sharing have been identified: disparate vocabularies, maintenance issues, regional differences,

liability, royalties, syntactic differences, etc. This standard addresses one obstacle by defining a syntax for creating

and sharing knowledge bases. In addition, the syntax facilitates addressing other obstacles by providing specific

fields to enter maintenance information, assignment of clinical responsibility, links to the literature, and mappings

between local vocabulary terms and terms in the knowledge base.

The range of health knowledge bases is large. This specification focuses on those knowledge bases that can be

represented as a set of Medical Logic Modules (MLMs). Each MLM contains maintenance information, links to

other sources of knowledge, and enough logic to make a single health decision. Knowledge bases that are composed

of independent rules, formulae, or protocols are most amenable to being represented using MLMs.

This specification, which is an outcome of the Columbia-Presbyterian Medical Center 1989 Arden Homestead

retreat on sharing health knowledge bases, was derived largely from HCOM, the decision modeling language of the

HELP System originated at the LDS Hospital, Salt Lake City, UT (1)9, and CARE, the language of the Regenstrief

Medical Record System of the Regenstrief Institute for Health Care, Indianapolis, IN (2).

8 Mobilizing Computable Biomedcial Knowledge (https://mobilizecbk.med.umich.edu/home)

9 The boldface numbers in parentheses refer to the list of references at the end of this standard.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 19

Revision date: 10/4/2023 Print date: 10/4/2023

5 MLM FORMAT

5.1 File Format

An MLM is a stream of text stored in an ASCII file (ANSI X3.4-1986) [international users may extend this

by using UNICODE encoding, but a conforming implementation need only implement X3.4]. One or more

MLMs may be placed in the same file. Within a file, an MLM begins with the marker maintenance: and

ends with the marker end:. MLMs may be separated by white space, as defined in Section 7.1.20 and/or

comments as defined in Section 7.1.19.

Annex 2, in this document, includes a schema for the Arden Syntax that allows representation of XML-

based MLMs that are fully consistent with the description of the Arden Syntax in this manual. An

extensible stylesheet language transform (XSLT) is provided which will convert XML-based MLMs to the

standard ASCII format.

5.2 Character Set

Within an MLM only the printable ASCII characters (ASCII 33 through and including 126), space (ASCII

32), carriage return (ASCII 13), line feed (ASCII 10), horizontal tab (ASCII 9), vertical tab (ASCII 11), and

form feed (ASCII 12) may be used. The use of horizontal tab is discouraged because there is no agreement

on how many spaces it represents. Other characters, such as the bell and backspace, are not allowed within

the MLM. Inside the library category (Section 6.2), a string constant (Section 7.1.13) or comment (Section

7.1.19), these character set restrictions are lifted.

5.3 Line Break

Lines are delimited by line breaks, which are any one of the following: a single carriage return, a single line

feed, or a carriage return-line feed pair.

5.4 White Space

The space, carriage return, line feed, horizontal tab, vertical tab, and form feed are collectively referred to

as white space. See also Section 7.1.20.

5.5 General Layout

Annex A1 contains a context-free grammar (formal description) of Arden Syntax MLMs expressed in

Backus-Naur Form (3). See Appendix X2 for MLM examples. A typical MLM is arranged like this.

maintenance:

slotname: slot-body;;

slotname: slot-body;;

…

library:

slotname: slot-body;;

...

knowledge:

slotname: slot-body;;

...

resources:

slotname: slot-body;;

...

end:

Arden Syntax for Medical Logic Systems

Page 20 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

5.6 Categories

An MLM is composed of slots grouped into three required categories, maintenance, library, and

knowledge, and one optional category, resources. A category is indicated by a category name followed

immediately by a colon (that is, maintenance:, library:, knowledge:, and resources:).White space may

precede the category name and follow the colon, but no white space is allowed between the category name

and the colon. Categories must appear in the order they appear in this standard.

5.7 Slots

Within each category is a set of slots.

Each slot consists of a slot name, followed immediately by a colon (for example, title:), then followed by

the slot body, and terminated with two adjacent semicolons (;;) which is referred to as double semicolon.

White space may precede the slot name and follow the colon, but no white space is allowed between the

slot name and the colon. The content of the slot body depends upon the slot, but it must not contain a

double semicolon, except inside comments (Section 7.1.19), string constants (Section 7.1.13), and mapping

clauses (Section 7.1.18).

Each slot must be unique in the MLM, and categories and slots must follow the order in which they are

listed in this standard. Some slots are required, and others are optional.

5.8 Slot Body Types

These are the basic types of slot bodies:

5.8.1 Textual Slots

A textual slot contains arbitrary text (except for double semicolon, which ends the slot). As the MLM

standard is augmented, slots that are currently considered to be textual may become coded or structured. An

example of a textual slot is the title slot, which can contain arbitrary text. For required textual slots, the text

may be empty.

5.8.2 Textual List Slots

Some slots contain textual lists. These are lists of arbitrary textual phrases, optionally separated by single

semicolons (;). An example of a textual list slot is the keywords slot. The list may be empty. It may not

contain a double semicolon (which ends the slot).

5.8.3 Coded Slots

Coded slots contain a simple coded entry like a number, a date, or a term from a predefined list. For

example, the priority slot can only contain a number, and the validation slot can contain only the terms

production, research, etc.

5.8.4 Structured Slots

Structured slots contain syntactically defined slot bodies. They are more complex than coded slots and are

further defined in Section 7. An example of this kind of slot is the logic slot.

5.9 MLM Termination

The end of the MLM is marked by the word end followed immediately by a colon (that is, end:). White

space may precede the terminator and follow the colon, but no white space is allowed between the

terminator and the colon.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 21

Revision date: 10/4/2023 Print date: 10/4/2023

5.10 Case Insensitivity

Category names, slot names, and the end terminator may be typed in uppercase (for example, END),

lowercase (for example, end), or mixed case (for example, eNd). See also Sections 7.1.3 and 7.1.5.

Arden Syntax for Medical Logic Systems

Page 22 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

6 SLOT DESCRIPTIONS

Next to each slot name is an indication of whether the slot is textual, textual list, coded, or structured, and whether it

is required or optional. Slots must appear in the order they appear in this specification.

6.1 Maintenance Category

The maintenance category contains the slots that specify information unrelated to the health knowledge in

the MLM. These slots are used for MLM knowledge base maintenance and change control. The

maintenance category also contains information about the version of the Arden Syntax that is being used.

6.1.1 Title (textual, required)

The title serves as a comment that describes briefly what the MLM does. For example,

title: Hepatitis B Surface Antigen in Pregnant Women;;

6.1.2 Mlmname (coded, required)

The mlmname uniquely identifies an MLM within a single authoring institution. It is represented as a string

of characters beginning with a letter and followed by letters, digits, period (.), minus (-), and underscores

(_). An mlmname may be 1 to 80 characters in length. Mlmnames are insensitive to case. The mlmname is

distinct from the name of the ASCII file, which happens to hold one or more MLMs. For example,

mlmname: hepatitis_B_in_pregnancy;;

 or

mlmname: hiv_screening.mlm;;

While mlmname is preferred as the name of this slot, filename is also permitted for backward compatibility.

6.1.3 Arden Syntax Version (coded, optional*)

The Arden Syntax version informs the compiler which version of the standard has been used to write the

MLM. If this slot is missing, the MLM is assumed to be written with the ASTM E1460-1992 standard

(which didn’t include this slot). Otherwise, the slot is of the following form:

arden: Version <Version number of Arden Syntax standard>;;

The text is not case sensitive. For example,

arden: Version 2;;

arden: version 2.1;;

arden: version 2.5;;

arden: version 2.6;;

* This slot is required for versions 2 and later of the syntax but is optional for backward compatibility.

That is, if it is missing, the assumed version is version 1.

6.1.4 Version (textual, required)

The current version of the MLM is arbitrary text, up to 80 characters in length, as is convenient for the

institution’s version control system, such as SCCS (Software Change/Configuration Control System) or

RCS (Revision Control System). It is suggested that versions start at 1.00 and advance by .01 for small

revisions and by 1 for large revisions. The exact form of the version information is institution-specific but

must allow determining which MLM is the most recent (see Section 11.2.4). For example,

version: 1.00;;

6.1.5 Institution (textual, required)

The institution slot contains the name of the authoring institution, up to 80 characters in length. For

example,

institution: Columbia University;;

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 23

Revision date: 10/4/2023 Print date: 10/4/2023

6.1.6 Author (textual list, required)

The author slot is free-form text. It should contain a list of the authors of the MLM, delimited by

semicolons. The following format should be used: first name, middle name or initial, last name, comma,

suffixes, comma, and degrees.

An electronic mail address enclosed in parentheses may optionally follow each author’s name. Internet

addresses are assumed. For example,

author: John M. Smith, Jr., M.D. (jms@camis.columbia.edu);;

6.1.7 Specialist (textual list, required)

The domain specialist is the person in the institution responsible for validating and installing the MLM.

This slot should always be present but blank when transferring MLMs from one institution to another. It is

the borrowing institution’s responsibility to fill this slot and accept responsibility for the use of the MLM.

The format is the same as for the author slot. For example,

specialist: Jane Doe, Ph.D.;;

 or

specialist: ;;

6.1.8 Date (coded, required)

The date of last revision of the MLM must be placed in this slot. Either a date or a date-time (that is, a point

in absolute time composed of a date plus a time-of-day) can be used. The format for dates and for date-time

combinations is ISO complete representation in extended format (with the T or t separator) with optional

time zones (ISO 8601:1988 (E)). Dates are yyyy-mm-dd so that January 2, 1989 would be represented as

1989-01-02. The earliest date-time Arden Syntax must support is January 1, 1800 (1800-01-01T00:00:00Z).

Times are yyyy-mm-ddThh:mm:ss with optional fractional seconds and optional time zones. Thus, 1:30

p.m. on January 2, 1989 UTC would be represented as 1989-01-02T13:30:00Z. For example,

date: 1989-01-02;;

6.1.9 Validation (coded, required)

The validation slot specifies the validation status of the MLM. Use one of the following terms:

a) production—approved for use in the clinical system,

b) research—approved for use in a research study,

c) testing—for debugging (when an MLM is written, this should be the initial value), or

d) expired—out of date, no longer in clinical use.

An example is:

validation: testing;;

MLMs should never be shared with a validation status of production, since the domain specialist for the

borrowing institution must set that validation status.

6.2 Library Category

The library category contains the slots pertinent to knowledge base maintenance that are related to the

MLM’s knowledge. These slots provide health personnel with predefined explanatory information and links

to the health literature. They also facilitate searching through a knowledge base of MLMs.

6.2.1 Purpose (textual, required)

The purpose slot describes briefly why the MLM is being used. For example,

purpose: Screen for newborns who are at risk for developing hepatitis B;;

Arden Syntax for Medical Logic Systems

Page 24 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

6.2.2 Explanation (textual, required)

The slot explains briefly in plain English how the MLM works. The explanation can be shown to the health

care provider when he or she asks why an MLM came to its decision. For example,

explanation: This woman has a positive hepatitis B surface antigen titer
within the past year. Therefore her newborn is at risk for developing
hepatitis B.;;

6.2.3 Keywords (textual list, required)

Keywords are descriptive words used for searching through modules. UMLS terms (4) are preferred but not

mandatory. Terms are delimited by semicolons (commas are allowed within a keyword). For example,

keywords: hepatitis B; pregnancy;;

6.2.4 Citations (structured / textual, optional)

The citations slot allows for the documentation of citations to relevant literature to be documented within

an MLM. There are two supported formats for the citations slot. The first is a textual format with no

implied structure. The textual format is provided for backward compatibility and is a deprecated form. The

second is a structured format described later in this section. When using the textual format, citations to the

literature should be entered in Vancouver style (5).

In the structured format, citations must be numbered, serving as specific references. The individual

citations may also be assigned a type. The type should follow the number and specify the function of the

citation for the particular MLM. Citation types are:

a) Support – citations which support, verify, or validate the algorithm in the logic slot;

b) Refute – citations which refute or offer alternatives to the algorithm in the logic slot;

For example,

citations:

 1. SUPPORT Steiner RW. Interpreting the fractional excretion of sodium.
 Am J Med 1984;77:699-702.

 2. Goldman L, Cook EF, Brand DA, Lee TH, Rouan GW, Weisberg MC, et al. A
 computer protocol to predict myocardial infarction in emergency
 department patients with chest pain. N Engl J Med 1988;318(13):797-803.

;;

Within the structured citations format, either Vancouver style (5) or OpenURL format (ANSI/NISO Z39.88)

are acceptable forms for representing individual citations. It is anticipated that the OpenURL format will

become the preferred form in future versions of this standard. Appendix X2 contains examples of citations

formatted using the OpenURL format as part of the discussion of an XML schema for representing MLMs.

6.2.5 Links (structured / textual, optional)

The links slot allows an institution to define links to other sources of information, such as an electronic

textbook, teaching cases, or educational modules. There are two supported formats for the links slot. The

first is a textual format with no implied structure. The textual format is provided for backward

compatibility and is a deprecated form. The second is a structured format described later in this section.

The structured format may either use the ad-hoc format first presented in Arden Syntax Version 2.0 or the

OpenURL format (ANSI/NISO Z39.88) to represent individual links. The individual links are delimited by

semicolons. The contents of the links are institution-specific.

Within the ad-hoc format, links to sites on intranets or the internet should be prefixed by the term URL

(Uniform Resource Locator) and the title of the document and link text should follow the defined standards

for representing protocols and data sources (e.g., "Document Title", 'FILE://link.html'; "Second Document",

'http://www.nlm.nih.gov/'). Electronic material can also be entered in the citations slot above. The

preferred form for structured links is:

 link type, space (ASCII 32), link description (Arden Syntax term), comma, link text (Arden Syntax

string). The only required element is the link text.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 25

Revision date: 10/4/2023 Print date: 10/4/2023

For example:

links:

 OTHER_LINK "CTIM .34.56.78";

 MESH_LINK "agranulocytosis/ci and sulfamethoxazole/ae";

 URL_LINK 'NLM Web Page', "http://www.nlm.nih.gov/";

 URL_LINK 'Visible Human Project',

 "http://www.nlm.nih.gov/research/visible/visible_human.html";

 URL_LINK 'DOS HTML File', "file://doslinx.htm";

 URL_LINK 'UNIX HTML File', "file://UnixLinx.html/";

;;

Each institution should test for expired links when receiving shared MLMs.

Appendix X2 contains examples of links formatted using the OpenURL format as part of the discussion of

an XML schema for representing MLMs.

Note: This definition of the structured link differs from the 2.5 and previous versions of the structured link.

This change was made to bring the structured link into conformance with the definitions of resource

statements as defined in Section 6.4. Future version of the Arden Syntax standard will provide mechanisms

for calling external links, it was decided to break backward compatibility on this issue to make the related

constructs of links and resources have parallel structure. As the structured link has not been widely

implemented it was felt that this was the proper time to make this change.

6.3 Knowledge Category

The knowledge category contains the slots that specify what the MLM does. These slots define the terms

used in the MLM (data slot), the context in which the MLM should be evoked (evoke slot), the condition to

be tested (logic slot), and the action to take should the condition be true (action slot).

6.3.1 Type (coded, required)

The type slot specifies what slots are contained in the knowledge category. The only type that has been

defined so far is data_driven, which implies that there are the following slots: data, priority, evoke, logic,

action, and urgency. For backward compatibility with the 1992 standard, the type data-driven (with a dash

"-" separating the words) is also permitted. That is,

type: data_driven;;

or

type: data-driven;;

6.3.2 Data (structured, required)

In the data slot, terms used locally in the MLM are mapped to entities within an institution. The actual

phrasing of the mapping will depend upon the institution. The details of this slot are explained in Section

11. In Section 0, this data mapping syntax has been extended to support FHIR. As with previous versions,

the goal is to map relevant queries attributes retrieved within FHIR objects to clinically recognizable terms

which will be used in the MLM’s logic (see sections 11.2.2 and 12.6).

6.3.3 Priority (coded, optional)

The priority is a number from 1 (low) to 99 (high) that specifies the relative order in which MLMs should

be evoked should several of them satisfy their evoke criteria simultaneously. An institution may choose

whether or not to use a priority. The institution is responsible for maintaining these numbers to avoid

conflicts. A borrowing institution will need to adjust these numbers to suit its collection of MLMs. If the

priority slot is omitted, a default value of 50 is used. For example,

priority: 90;;

priority: 40.5;;

Arden Syntax for Medical Logic Systems

Page 26 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

6.3.4 Evoke (structured, required)

The evoke slot contains the conditions under which the MLM becomes active. The details of this slot are

explained in Section 14.

6.3.5 Logic (structured, required)

This slot contains the actual logic of the MLM. It generally tests some condition and then concludes true or

false. The details of this slot are explained in Section 10.

6.3.6 Action (structured, required)

This slot contains the action produced when the logic slot concludes true. The details of this slot are

explained in Section 13.

6.3.7 Urgency (coded, optional)

The urgency of the action or message is represented as a number from 1 (low) to 99 (high), or by a variable

representing a number from 1 to 99. It is recommended that only integers be used as values in the urgency

slot. Whereas the priority determines the order of execution of MLMs as they are evoked, the urgency

determines the importance of the action of the MLM only if the MLM concludes true (that is, only if the

MLM decides to carry out its action). If the urgency slot is omitted, or the variable representing urgency is

null or outside the range 1 to 99, a default urgency of 50 is used. For example,

 urgency: 90;;

 urgency: urg_var;;

6.4 Resources Category*

The resources category contains a set of language slots that specify the textual resources on which the

localized operator may be applied to obtain message contents in different languages (Section 9.8.11). Each

language slot defines a set of key/value pairs that represent text constants in one specific language. At least

one language slot is required if the resources category is defined. Its structure is:

resources:

 default: <language code>;;

 language: <language code>

 <set of language specific resources>;;

 language : <language code>

 <set of language specific resources>;;

The language codes are defined either as 2-character ISO 639-1 language codes or as combination of a 2-

character ISO 639-1 language code and a 2-character ISO 3166-1 geographical code concatenated by an

underscore. That is,

en

or

en_US

or

en_GB

or

fr

The ISO 639-1 code is mandatory while the extended combination of language and region is optional.

Implementing systems that support localization using this extended language code (that is, a locale) can

further define resources for the individual use of one specific language in different regions in the world.

* This category is required for versions 2.9 and later of the syntax but is optional in older versions of the

Arden Syntax. For ensuring backward compatibility, in older versions of the Arden Syntax,

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 27

Revision date: 10/4/2023 Print date: 10/4/2023

 resources:

 default: en;;

 language: en;;

has to be used in the case the value is missing.

6.4.1 Default (coded, required)

When using the localized operator, the implementing system has to retrieve the current user language

setting. The default slot specifies what language setting has to be applied on the MLM when this user

language cannot be retrieved by the implementing system. The value of the default slot is a language code

as defined in Section 6.4. That is,

default: de;;

or

default: en_US;;

6.4.2 Language (coded, required)

The resources category also consists of one or more language slots. Each language slot contains of a

language code as defined in Section 6.4 followed by a set of key/value pairs. Each key is a term (see

Section 7.1.17) and its associated value is a string constant (Section 7.1.13). Each key is separated from its

value by a colon (:). Each string defines the result of the localized operator when applied to the

corresponding term. That is,

language: en

 'msg': "Caution, the patient has the following allergy to penicillin
documented: ";

 'creat': "The patient's calculated creatinine clearance is %f ml/min."

;;

language: de

 'msg': "Vorsicht, zu diesem Patienten wurde die folgende Penicillinallergie
dokumentiert: ";

 'creat': "Die berechnete Kreatinin-Clearance des Patienten beträgt %f
ml/min."

;;

Each language slot must contain a unique language code (ISO 639.1) or optionally, a language code

concatenated with an underscore “_” followed by a region code (ISO 3166-1). If these region codes are

used, every entry associated with the language must contain a region code. For example,

language: en_US [..] ;;

language: en_UK [..] ;;

is valid while

language: en [..] ;;

language: en_US [..] ;;

is not.

The resources category may contain multiple language slots with a variety of <language code>_<region

code> definitions. If the implementing system is only able to determine the required language at runtime,

but not the required region, the first language slot matching that language is chosen. In the following

example, if only the language code ‘de’ was known, the German definition (de_DE) would be used:

language: de_DE [..] ;;

language: de_AT [..] ;;

Arden Syntax for Medical Logic Systems

Page 28 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

7 STRUCTURED SLOT SYNTAX

7.1 Tokens

The structured slots consist of a stream of character strings known as lexical elements or tokens. These

tokens can be classified as follows:

7.1.1 Reserved Words

Reserved words are predefined tokens made of letters and digits. They are used to construct statements, to

represent operators, and to represent data constants. Some are not currently used but are reserved for future

use. The predefined synonyms of operators as well as the operators themselves are considered synonyms.

The existing reserved words are listed in Annex A2.

7.1.2 The

The is a special reserved word which is ignored wherever it is found in a structured slot (that is, it is treated

exactly the same as white space). Its purpose is to improve the readability of the structured slots by

permitting statements to be more like English.

7.1.3 Case Insensitivity

With the exception of the format with … format specification, the syntax is insensitive to the case of

reserved words. That is, reserved words may be typed in uppercase, lowercase, and mixed case. For

example, then and THEN are the same word. See Sections 5.10 and 9.8.2 and Annex A5.

7.1.4 Identifiers

Identifiers are alphanumeric tokens. The first character of an identifier must be a letter, and the rest must be

letters, digits, and underscores (_). Identifiers must be 1 to 80 characters in length. It is an error for an

identifier to be longer than 80 characters. Reserved words are not considered identifiers; for example, then

is a reserved word, not an identifier. Identifiers are used to represent variables, which hold data.

7.1.5 Case Insensitivity

The syntax is insensitive to the case of identifiers. See Sections 5.10 and 7.1.3.

7.1.6 Special Symbols

The special symbols are predefined non-alphanumeric tokens. Special symbols are used for punctuation

and to represent operators. They are listed in Annex A3.

7.1.7 Number Constants

Constant numbers contain one or more digits (0 to 9) and an optional decimal point (.). (As in Specification

E 1238 and HL7 2.3, .1 and 345. are valid numbers.) A number constant may end with an exponent,

represented by an E or e, followed by an optional sign and one or more digits. These are valid numbers:

0

345

0.1

34.5E34

0.1e-4

.3

3.

3e10

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 29

Revision date: 10/4/2023 Print date: 10/4/2023

7.1.8 Negative Numbers

Negative numbers are created using the unary minus operator (-, see Section 9.9.4). The minus sign is not

strictly a part of the number constant.

7.1.9 Time Constants

Time constants use the ISO extended format (with the T or t separator) for date-time combinations with

optional fractional seconds (using . format) and with optional time zones (see Section 6.1.8).

7.1.10 Fractional Seconds

Fractional seconds are represented by appending a decimal point (.) and one or more digits (for example,

1989-01-01T13:30:00.123).

7.1.11 Time Zones

The local time zone is the default. ISO Coordinated Universal Time (UTC) is represented by appending a z

to the end (for example, 1989-01-01T13:30:00.123Z). The local time zone can be explicitly stated by

appending + or - hh:mm to indicate how many hours and minutes the local time is ahead or behind UTC.

Thus EST (Eastern Standard Time, United States of America) time zone would use 1989-01-01T13:30:00-

05:00, which would be equivalent to 1989-01-01T18:30:00Z.

7.1.12 Constructing Times

The + operator can be used to construct a time from durations. Here is an example of constructing a time:

1800-01-01 + (1993-1800)years + (5-1)months + (17-1)days produces the value 1993-05-17.

7.1.13 String Constants

String constants begin and end with the quotation mark (", which is ASCII 34). For example,

"this is a string".

There is no limit on the length of strings.

7.1.14 Internal Quotation Marks

A quotation mark within a string is represented by using two adjacent quotation marks. For example,

"this string has one quotation mark: "" ".

7.1.15 Single Line Break

Within a string, white space containing a single line break (see Section 5.3) is converted to a single space.

For example,

"this is a string with

one space between 'with' and 'one'"

7.1.16 Multiple Line Breaks

Within a string, white space containing more than one line break is converted to a single line break.

"this is a string with

one line break between 'with' and 'one'"

7.1.17 Term Constants

Term constants begin and end with an apostrophe (' which is ASCII 39), and they contain a valid mlmname.

For example,

Arden Syntax for Medical Logic Systems

Page 30 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 'mlm_name'

7.1.18 Mapping Clauses

A mapping clause is a string of characters that begins with { and ends with } (ASCII 123 and 125,

respectively). Mapping clauses are used in the data slot to signify institution-specific definitions such as

database queries. The only requirement imposed on what is within the curly brackets is that curly brackets

are not allowed within mapping clauses. The definition of comments and quotes inside mapping clauses is

not specified by this standard; it is recommended that they be the same as those given in this standard. The

Arden Syntax conventions for variable names, such as case insensitivity or the treatment of the as white

space, need not be observed in a mapping clause. A <mapping> may (in an implementation-defined

manner), within the curly brackets, use Arden variables; but it cannot set any Arden variables (Arden

variables can only set by the <var>(s) on the left side of the assignment operator). Because of this, an

MLM may require some modification before it can be processed at another institution, even if the other

institution’s compiler is set to skip over read mappings.

It is strongly recommended that MLM authors include comments to all the mapping clauses used in an

MLM, so MLM recipients understand the intention of the mapping clause definition when sharing MLMs.

Identifiers from the UMLS Metathesaurus could aid in identifying and describing the concepts in the

comments. Authors should also put all literals and constants in the data slot, with explanation, to allow

MLM recipients to more easily customize MLMs.

In Arden Syntax, version 3.0 and above, data relevant to an MLM can also be accessed using HL7 FHIR

service methods (see Section 12). Syntax for FHIR-based queries is supported and will be extended with

future versions, as HL7 FHIR is becoming a standard in data exchange. Note that for FHIR queries the

curly brackets ({ and }) can be omitted, and the query therefore does not need institution-specific

adjustments. To successfully write a FHIR query the syntax for the READ statements containing the

mapping clause might be adapted, therefore refer to the appropriate chapters 11.2.1 and 11.2.2.

7.1.19 Comments

A comment is a string of characters that begins with /* and ends with */. Comments are used to document

how the slot works, but they are ignored logically (like the and other white space). Comments do not nest

(e.g., /* A comment /* */ is a single comment). A comment need not be preceded or followed by white

space. Thus, x/**/y is the same as x y.

A comment may also be specified by the characters // through line break (see Section 5.3). When // is

encountered, everything else on the line is ignored, including */.

7.1.20 White Space

Any string of spaces, carriage returns, line feeds, horizontal tabs, vertical tabs, form feeds, and comments is

known as white space. White space is used to separate other syntactic elements and to format the slot for

easier reading. White space is required between any two tokens that may begin or end with letters, digits, or

underscores (for example, if done). They are also required between two string constants. They are optional

between other tokens (for example, 3+4 versus 3 + 4). See also Sections 5.4 and 7.1.2.

7.1.21 Time-of-Day Constants

Time-of-day constants use the ISO format (for example, 18:30, 13:23:00.123) without the date field.

Constants are defined analogously to time constants as defined in 7.1.9. Time-of-day constants must

contain at least the two-digit hour and minute components – in other words, they must consist of two

integers ranging from 00 to 23, one colon, and two more integers ranging from 00 to 59. Seconds,

fractional seconds and time zones are optional in time-of-day constants. Midnight is expressed as

00:00:00.000 and all other time-of-day values are greater than this value.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 31

Revision date: 10/4/2023 Print date: 10/4/2023

7.2 Organization

The tokens are organized into the following constructs:

7.2.1 Statements

A structured slot is composed of a set of statements. Each statement specifies a logical constraint or an

action to be performed. In general, statements are carried out sequentially in the order that they appear.

These are examples of statements (each is preceded by a comment that tells what it does):

/* this assigns 0 to variable "var1" */

let var1 be 0;

/* this causes the MLM named "hyperkalemia" to be executed */

hyperkalemia_present := call hyperkalemia;

/* this concludes "true" if the potassium is greater than 5 */

if potassium > 5.0 then

 conclude true;

endif;

7.2.2 Statement Termination

All statements except for the last statement in a slot must end with a semicolon (;). Thus, the semicolon

acts as a statement separator. If the last statement of a slot has a terminating semicolon, there must be at

least one white space between it and the double semicolon that terminates the slot (;;; is illegal but ;/**/;;

is legal). For example, the logic slot could contain:

logic:

 last_potas := last potas_list;

 if last_potas > 5.0 then

 conclude true;

 endif;

The syntax of the statements depends upon the individual slot. For a detailed description of the allowable

statement types in each structured slot, see Sections 9.19, 11, 13, and 14.

7.2.3 Expressions

Statements are composed of reserved words, special symbols, and expressions. An expression represents a

data value, which may belong to any one of the types defined in Section 8. Expressions may contain any of

the following:

7.2.4 Constant

The data value may be represented explicitly using a constant like the number 3, the time 1991-03-

23T00:00:00, etc. These are valid expressions:

null

true

345.4

"this is a string"

1991-05-01T23:12:23

7.2.5 Variable

An identifier (see Section 7.1.4) within an expression signifies a variable (see Section 7.2.7). These are

valid variables:

var1

this_is_a_variable

a

Arden Syntax for Medical Logic Systems

Page 32 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

7.2.6 Operator and Arguments

An expression may contain an operator and one or more sub-expressions known as arguments. For

example, in 3+4, + is an operator and 3 and 4 are arguments. The result of such an expression is a new data

value, which is 7 in this example. Expressions may be nested so that an expression may be an argument in

another expression. These are valid expressions:

4 * cosine 5

var1 = 7 and var2 = 15

(4+3) * 7

For details on operators, precedence, associativity, and parentheses, see Section 9.1.

7.2.7 Variables

A variable is a temporary holding area for a data value. Variables are not declared explicitly but are

declared implicitly when they are first used. A variable is assigned a data value using an assignment

statement (see Section 10.2.1). When it is later used in an expression, it represents the value that was

assigned to it. For example, var1 is a valid variable name. If the variable is used before it is assigned a

value, then its value is null.

7.2.7.1 Scope

The scope of a variable is the entire MLM, not an individual slot. MLMs cannot read variables from other

MLMs directly; thus, variables used in an MLM are not available to MLMs that are called (see Section

10.2.5). Non-Arden variables may be referenced and set within mapping statements, as restricted by the

special rules for the individual mapping statements (for example, Section 11.2.4); in mapping statements,

Arden variables may be referenced but not set. It is institution-defined how conflicts between Arden and

non-Arden variable names are resolved.

7.2.7.2 Special Variables

Some variables, such as event variables, MLM variables, message variables, and destination variables, are

special. They can only be used in particular constructs, and not in general expressions. These variables use

special assignment statements in the data slot as defined in Section 11 (these special assignment statements

are equivalent to declarations for the special variables). Special variables can be converted to strings and

passed as arguments. The only valid operators on special variables are is [not] equal (Section 9.6.1), =

(Section 9.5.1), and <> (Section 9.5.2).

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 33

Revision date: 10/4/2023 Print date: 10/4/2023

8 DATA TYPES

The basic function of an MLM is to retrieve patient data, manipulate the data, come to some decision, and possibly

perform an action. Data may come from various sources, such as a direct query to the patient database, a constant in

the MLM, or the result of an operation on other data.

Data items may be kept in an ordered collection, called a list (ordered by position in the list, not by primary time).

Lists are described further in Section 8.8.

The data are classified into several data types.

8.1 Null

Null is a special data type that signifies uncertainty. Such uncertainty may be the result of a lack of

information in the patient database or an explicit null value in the database. Null results from an error in

execution, such as a type mismatch or division by zero. Null may be specified explicitly within a slot using

the word null (that is, the null constant). Entities of data type null may also have a primary time. The

following expressions result in null (each is preceded by a comment):

/* explicit null */

null

/* division by zero */

3/0

/* addition of Boolean */

true + 3

8.2 Boolean

The Boolean data type includes the two truth values: true and false. The word true signifies Boolean true

and the word false signifies Boolean false.

The logical operators use tri-state logic by using null to signify the third state, uncertainty. For example,

true or null is true. Although null is uncertain, a disjunction that includes true is always true regardless of

the other arguments. However, false or null is null because false in a disjunction adds no information. See

Section 9.4 for full truth tables.

8.3 Number

There is a single number type, so there is no distinction between integer and floating-point numbers.

Number constants (for example, 3.4E-12) are defined in Section 7.1.7. Internally, all arithmetic is done in

floating point. For example, 1/2 evaluates to 0.5.

8.4 Time

The time data type refers to points in absolute time; it is also referred to as timestamp in other systems.

Both date and time-of-day must be specified. Times back to the year 1800 must be supported and times

before 1800-01-01 are not valid. Time constants (for example, 1990-07-12T00:00:00) are defined in

Section 7.1.9.

8.4.1 Granularity

The granularity of time beyond milliseconds is left to the implementing instance. Times stored in patient

databases will have varying granularities. When a time is read by the MLM, it is always truncated to the

beginning of the granule interval. For example, if the time-of-day is recorded only to the minute, then zero

seconds are assumed; if only the date is known, then the time-of-day is assumed to be midnight.

8.4.2 Midnight

Midnight represents the beginning of a day and is expressed as T00:00:00 in a time data type, or as 00:00 as

a time-of-day. 24:00 is not defined.

Arden Syntax for Medical Logic Systems

Page 34 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

8.4.3 Now

The word now is a time constant that signifies the time when the MLM started execution. Now is constant

through the execution of the MLM; that is, if now is used more than once, it will have the same value

within the same MLM. Now inside a nested MLM will therefore be different from the now of the calling

MLM.

8.4.4 Eventtime

One way that MLMs are evoked is by a triggering event. For example, the storage of a serum potassium in

the patient database is an event that might evoke an MLM. The word eventtime is a time constant that

signifies the time that the evoking event occurred (for example, the time that the database was updated).

The eventtime is useful because MLMs may be evoked after a time delay; using eventtime, the MLM can

query for what has occurred since the evoking event.

8.4.5 Triggertime

If the MLM is triggered directly by an event or another MLM, the triggertime is the same as the

eventtime. If the MLM is triggered by a delayed trigger (see Section 14.3.3) or a delayed MLM call (see

Section 13.2.5), the triggertime is the eventtime plus the delay time. Using triggertime, an MLM can

trigger another MLM as if the second MLM were directly triggered by the event. The following inequality

is guaranteed within a single MLM: eventtime < triggertime < now.

8.4.6 Currenttime

The word currenttime represents the system time at the instant the word is encountered during MLM

execution. Currenttime differs from now in that currenttime constantly changes, while now remains

constant while an MLM runs. Thus, the time required to execute an MLM (or query) can be determined by

subtracting now from currenttime. The following inequality is guaranteed within a single MLM:

eventtime <= triggertime <= now <= currenttime.

8.5 Duration

The duration data type signifies an interval of time that is not anchored to any particular point in absolute

time. There are no duration constants. Instead one builds durations using the duration operators (see Section

9.10.7). For example, 1 day, 45 seconds, and 3.2 months are durations.

8.5.1 Sub-Types

The duration data type has two sub-types: months and seconds. The reason for the division is that the

number of seconds in a month or in a year depends on the starting date. Durations of months and years are

expressed as months. Durations of seconds, minutes, hours, days, and weeks are expressed as seconds.

There are no complex durations; the sub-type must be either months or seconds, but not both. For both

types of durations, the duration amount may be a floating-point value.

The printing of a duration (that is, its string version) is independent of its internal representation. The health

care provider who reads the result of an MLM may not realize that there are two sub-types of durations.

How durations are printed is location specific. For example, the string version of 6E+08 seconds might be

19.01 years. See Section 9.8.

8.5.2 Time and Duration Arithmetic

Operations among times and durations are carried out as follows:

8.5.2.1 Time - Time

The subtraction of two times always results in a seconds duration. For example, 1990-03-01T00:00:00 -

1990-02-01T00:00:00 results in 2419200 seconds.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 35

Revision date: 10/4/2023 Print date: 10/4/2023

8.5.2.2 Time and Seconds

The addition or subtraction of a time and a seconds duration results in a time. The arithmetic is

straightforward: the time is expressed as the number of seconds since some anchor point (for example,

1800-01-01T00:00:00) and the number of seconds is added to or subtracted from the time. For example,

1990-02-01T00:00:00 + 2419201 seconds results in 1990-03-01T00:00:01.

8.5.2.3 Time and Months

The addition or subtraction of a time and a months duration results in a time. The time is expressed in date

and time-of-day format (for example, 1991-01-31T00:00:00). Months are then added to or subtracted from

the year and month components of the date (that is, 1991-01 in the example). If the resulting time is invalid

due to the number of days in the new month, then the days are truncated to the last valid day of the month.

For example, 1991-01-31T00:00:00 + 1 month results in 1991-02-28T00:00:00. If the month has a

fractional component (for example, 1.1 months) then integer months are used (that is, 1 month and 2

months in the example) and the result is computed through interpolation (the integer part of the months are

added; then the fractional part is used on the next month for addition and on the previous month for

subtraction). For example, 1991-01-31T00:00:00 + 1.1 months results in 1991-02-28T00:00:00 + (0.1 *

2629746 seconds) or 1991-03-03T01:02:54.6. Explanation:

1991-01-31T00:00:00 + 1 month = 1991-02-28T00:00:00

and

0.1 Months * 2629746 seconds / month [from 8.5.2.4] = 262974.6 seconds

262974.6 seconds / (60 seconds / minute) / (1440 minutes /day) = 3.0436875 days

0.0436875 days * 1440 minutes / day = 62.91 minutes

 = 1 hour, 2 minutes, 54.6 seconds.

therefore

0.1 months = 3 days 1 hour 2 minutes 54.6 seconds

thus

1991-01-31T00:00:00 + 1.1 months = 1991-02-28T00:00:00 + 3 days 1 hour 2 minutes 54.6 seconds

 = 1991-03-03T01:02:54.6

Contrary to addition and subtraction on numbers, addition and subtraction of durations is not invertible. For

example:

1993-01-31 + 1 month = 1993-02-28

1993-02-28 - 1 month = 1993-01-28 // (3 days earlier)

The order of operations is important: (d+1 month)+1 day may have a different value than d+(1 month+1

day).

Other examples:

1991-01-31T00:00:00 - 2.1 months = 1990-11-26T22:57:05.4

1991-01-31T00:00:00 - 1.1 months = 1990-12-27T22:57:05.4

1991-04-30T00:00:00 - 0.1 months = 1991-04-26T22:57:05.4

8.5.2.4 Months and Seconds

Operations between months and seconds are done by first converting the months arguments to seconds

using this conversion constant: 2629746 seconds/month (the average number of seconds in a month in the

Gregorian calendar). For example, 1 month / 1 second results in 2629746.

8.6 String

Strings are streams of characters of variable length. String constants are defined in Section 7.1.13. For

example,

Arden Syntax for Medical Logic Systems

Page 36 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

"this is a string constant"

8.7 Term

Terms are currently used only to represent mlmnames within a structured slot and the link text portion of a

structured link record. They are used only in a call statement (see Section 10.2.5). In the future they will be

used for controlled vocabulary terms. Term constants are defined in Section 7.1.17. For example,

'mlm_name2'

'http://www.nlm.nih.gov/'

8.8 List

A list is an ordered set of elements, each of which may be null, Boolean, event, destination, message, term,

number, time, duration, string, truth value, fuzzy number, fuzzy time, or fuzzy duration. There are no nested

lists; that is, a list cannot be the element of another list. Lists may be heterogeneous; that is, the elements in

a list may be of different types. There is one list constant, the empty list, which is signified by using a pair

of empty parentheses: (). White space is allowed within an empty list’s parentheses. Other lists are created

by using list operators like the comma (,) to build lists from single items (see Section 9.2). For the output

format of lists (including single element lists), see Section 9.8. For example, these are valid lists:

4, 3, 5

3, true, 5, null

, 1

()

If operators that expect list arguments are presented non-list arguments, the arguments are implicitly

converted to single-element lists before the operator is applied.

8.9 Query Results

The result of a database query has a time value in addition to its data value.

Queries in the data slot retrieve data from the patient database or from other databases (for example, a

controlled vocabulary database or a financial database). The result of a query is assigned to a variable for

use in the other slots.

Queries returning data objects defined in accordance with the HL7 FHIR specification represent a special

class of Arden query results, before assigned to a variable for use in other slots. These queries follow the

rules defined for retrieving data objects using the FHIR read API but are constrained as defined below

(Section 0).

8.9.1 Primary Time

Every item in the patient database is assumed to have some primary time (also called time of occurrence)

associated with it. This time is defined as the medically relevant time for that query. For different entities,

the primary time might signify different times. The primary time of a blood test might be the time it was

drawn from the patient (or the closest to that time), whereas the primary time of a medication order might

be the time the order was placed. If there is no medically relevant time for a data item, its primary time

value should be equivalent to the eventtime (the time when the information was correct).

Implicit in every query to the patient database is a request for the primary time of the data. For example,

when one retrieves a list of serum potassiums, one actually retrieves a list of pairs. Each pair contains a data

value (the serum potassium numeric value) and a time value (for example, when the specimen was drawn).

In the case of data objects retrieved using a FHIR read API, the eventtime will be the effectiveDateTime for

Observation resources and the onsetDateTime for Condition resources. (See Section 12.4 for the assignment

of Primary Time for other FHIR resources.)

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 37

Revision date: 10/4/2023 Print date: 10/4/2023

8.9.2 Retrieval Order

The result of a query is by default sorted in chronological order by the primary time of the result. The query

may specify a different sort order.

8.9.3 Data Value

If a variable has been assigned the result of a query, then the use of the variable always refers to the data

value. For example, if potas is a variable that has been assigned a list of serum potassiums, then one could

use this statement to check the value of the most recent potassium measurement:

if latest potas > 5.0 then

 conclude true;

endif;

8.9.4 Time Function Operator

By using the time operator (see Section 9.17), one can set or retrieve the primary time associated with a

variable or list element. The time retrieve function is described in Section 9.17.1. Setting primary times is

discussed in the second paragraph of Section 9.17.1. For example, one could use this statement to check the

primary time of the most recent potassium measurement:

if time of latest potas is within past 3 days then

 conclude true;

endif;

The eventtime is not necessarily the primary time of the evoking event. For example, if the storage of a

serum potassium evokes an MLM, then the eventtime is the time that the result was stored in the database,

but the primary time of the result is the time that it was drawn from the patient.

8.10 Object

An object results from use of the New statement (see Section 10.2.8), the read as statement (Section

11.2.2), the destination as statement (Section 11.2.9), or the message as statement (Section 11.2.7). It may

contain multiple named attributes, each of which may contain any valid Arden type (including lists or

objects). The latter capability allows for complex data structures to be manipulated by an MLM (lists

within lists, for example) which would otherwise not be possible. Objects are also useful for interfacing

MLMs with other object-oriented domain models (outside the scope of this document).

Objects defined using by referencing the attributes of an HL7 FHIR resource can be used directly (outside

of the curly braces) in Arden logic.

8.11 Time-of-Day

The time-of-day data type refers to points in time that are not directly linked to a specific date. Time-of-day

constants are analogously defined to time constants leaving the date portion blank. Time-of-day constants

(for example, 23:20:00) are defined in Section 7.1.13.

Operators that can use both time arguments and time-of-day arguments at the same time may follow the

default time-of-day handling as defined in Section 9.1.5. The primary time handling is unaffected by this

extension.

Note: To improve readability when describing this data type, the phrase “time-of-day” is usually

hyphenated. These hyphens are NOT included when TIME OF DAY is used in an MLM.

8.12 Day-of-Week

The day-of-week data type is a special data type to represent specific days of the week to be used along

with the "day of week" operator. Values of this data type are either expressed by constants or by integer

values.

Arden Syntax for Medical Logic Systems

Page 38 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

Day-of-week constants are defined by the following keywords:

MONDAY (1),

TUESDAY (2),

WEDNESDAY (3),

THURSDAY (4),

FRIDAY (5),

SATURDAY (6),

SUNDAY (7)

Note: To improve readability when describing this data type, the phrase “day-of-week” is usually

hyphenated. These hyphens are NOT included when DAY OF WEEK is used in an MLM.

8.13 Truth Value

The data type of propositional variables is denoted by truth value or − for reasons of backwards

compatibility −, equivalently, Boolean. A variable of this type stores real numbers between 0 and 1. The

Boolean value true is equal to the truth value 1 and the Boolean value false is equal to the truth value 0.

One may write:

Var := truth value 0; or, equivalently Var := false;

Var := truth value 0.667;

Var := truth value 1; or, equivalently Var := true;

8.14 Fuzzy Data Types

Fuzzy data types are fuzzy sets over one of the data types: number, time, or duration.

Fuzzy sets − as opposed to classical, crisp sets − provide a formal methodology to define and process sets

or classes with unsharp boundaries.

A linguistic term in clinical descriptions/texts such as small or large, cold or warm, normal and elevated,

enlarged and symmetric, diabetic and hypoxic is inherently a set, or class, with unsharp boundaries. A crisp

boundary between neighboring concepts such as normal or pathological is − in the context of evaluating a

particular patient − to a certain extent arbitrary and thus often not acceptable in real clinical situations.

For example, fever is defined as body temperature ≥ 38°C. What about 37.9°C or 37.8°C? Is it fever with a

certain degree, e.g., 0.8 or 0.6? In clinical medicine, the answer should be yes. In computer-assisted clinical

medicine, a diagnostic definition including fever ought to be enabled when measured 37.9°C at least to a

certain degree, even if the crisp fever definition starts at 38°C.

Fuzzy sets make it possible to formally define linguistic terms with unsharp boundaries, to calculate

degrees of truth if measurements fall into the borderline range, and fuzzy logic allows propagating the

results through further calculation. The example MLMs X2.9, X2.10 and X2.11 illustrate the difference

between crisp, simulated fuzzy, and fuzzy representation of the same calculation.

8.14.1 Fuzzy Number

The data type fuzzy number is dedicated to fuzzy sets over the reals. A fuzzy number partitions the reals

into a finite number of (possibly unbounded) intervals, on each of which the fuzzy set is linear and

continuous.

Formally, a fuzzy set u : R→ [0, 1] can be stored into a variable of the type fuzzy number, if the following

condition is met: There are a1 < a2 < … < ak with k >= 1, such that u is linear on each open interval (a1; a2),

…, (ak-1; ak), u is constant on (-∞; a1) and (ak; +∞), and for each x in R, u(x) coincides either with the left

limit or the right limit of u at x. If u is continuous, we then define:

Fuzzyset u := fuzzy set (a1, t1), (a2, t2), ..., (ak, tk);

where ti = u(ai) for i = 1, …, k and u(x) is called the characteristic function of the fuzzy set.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 39

Revision date: 10/4/2023 Print date: 10/4/2023

The characteristic functions are allowed to contain discontinuities, which are not likely to be required

inapplications, but should at least be definable. At discontinuity points we denote the left as well as the

right limit. The first assignment is the value at that point, unless the second one appears twice. For instance,

TwotoThree := fuzzy set (2, truth value 0), (2, truth value 1), (2, truth
value 1), (3, truth value 1), (3, truth value 0);

At point 2 there is a "discontinuity point" which means that approaching 2 from the left side the

membership value is 0 while approaching 2 from the right side the membership value is 1. The question is

which membership value is assigned to 2. The sentence "The first assignment is the value at that point,

unless the second one appears twice." means in this example (fuzzy set TwotoThree) that the membership

value at point 2 is 1, since the (2, 1) appears twice. If the fuzzy set is adjusted to

TwotoThree := fuzzy set (2, truth value 0), (2, truth value 1), (3, truth
value 1), (3, truth value 0);

the membership value at point 2 is 0.

The example

OnetoFour := fuzzy set (1, truth value 0), (2, truth value 1), (2, truth
value 1), (3, truth value 1), (4, truth value 0);

has no such "discontinuity point" at 2 and writing the (2, 1) twice is unnecessary but should have no effect

to the interpretation of the function.

Fuzzy sets describing a symmetrical triangle around a single point, which is mapped to 1, are called

triangular normal fuzzy sets. A simplified notation is permitted for these: an expression of the form fuzzy

set (a - b, truth value 0), (a, truth value 1), (a + b, truth value 0), where a; b in R and b > 0, may also be

written as:

a fuzzified by b

8.14.2 Fuzzy Time

The data type fuzzy time refers to fuzzy sets over times. Except for the simplified notation, all definitions of

fuzzy numbers apply mutatis mutandis to fuzzy time.

For the simplified notation, a time constant can only be fuzzified by duration. Thus, we define

AfuzzyTime := today fuzzified by 1 day;

simple := 2009-10-10 fuzzified by 12 hours;

Arden Syntax for Medical Logic Systems

Page 40 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

complex := fuzzy set (2009-10-10, truth value 0), (2009-10-11, truth value
1), (2009-11-10, truth value 1), (2009-11-11, truth value 0);

8.14.3 Fuzzy Duration

All definitions of a fuzzy number apply mutatis mutandis to fuzzy duration.

simple := 14 days fuzzified by 1 day;

complex := fuzzy set (2 days, truth value 0), (3 days, truth value 1), (14
days, truth value 1), (31 days, truth value 0);

8.15 Applicability

All simple data types (Truth Value, Boolean, Number, Time, Duration, String, Term, Query Results, Time-

of-Day, Day-of-Week, Fuzzy Types) are endowed with an additional type of information called the degree

of applicability. The degree of applicability stores a truth value that refers to the degree to which it is

reasonable to use the value of a variable. It is 1 by default, and—whenever the program branches—reduced

automatically according to the weight assigned to that particular branch. The programmer may decide to

make explicit use of this concept but is not required to do so. To access the degree of applicability of an

expression, the Arden Syntax programmer is referred to the applicability [of] operator (Section 9.19.4).

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 41

Revision date: 10/4/2023 Print date: 10/4/2023

9 OPERATOR DESCRIPTIONS

9.1 General Properties

Operators are used in expressions to manipulate data. They accept one or more arguments (data values) and

they produce a result (a new data value). The following properties apply to the operator definitions in this

section.

9.1.1 Number of Arguments

Operators may have one, two, or three arguments. Some operators have two forms: one with one argument

and one with two arguments. Operators are described as follows:

unary operator: one argument

binary operator: two arguments

ternary operator: three arguments

9.1.2 Data Type Constraints

Most operators work on only a subset of all the data types. Every operator description includes a type

constraint that shows the position and allowable types of all of its arguments. Its general format is like this:

 <num:type> := <num:type> op <num:type>

In this constraint, op is the operator being described.

Each num is one of the following:

1—the operator requires a single element

k, m, or n—the operator normally takes a single element but a list with 0, 1, or more elements may be used

as described below. If the same letter appears more than once in a data type constraint, then the arguments

so indicated must have the same number of elements; otherwise the operation results in null.

Each type is one of the following:

null—null data type

Boolean—Boolean data type

number—number data type

time—time data type

time-of-day—time-of-day data type

times—time and time-of-day data type

duration—duration data type

string—string data type

truth-value—truth value data type

item—not used in expressions, only in call statements (see Section 10.2.4)

any-type—null, Boolean, number, time, time-of-day, duration, string, truth-value, fuzzy-number,

fuzzy-time, or fuzzy-duration

fuzzy-type—fuzzy-number, fuzzy-time, or fuzzy-duration

crisp-type—Boolean, number, time, time-of-day, duration, or string

Arden Syntax for Medical Logic Systems

Page 42 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

non-null—Boolean, number, time, time-of-day, duration, string, truth-value, fuzzy-number, fuzzy-

time, or fuzzy-duration

ordered—number, time, time-of-day, duration, string, or truth-value

<num:type>(s) to the right of the := indicates the data type(s) of the argument(s). If the operator is applied

to an argument with a type outside of its defined set, then null results. For example, ** is not defined for

the time data type so 3**1991-03-24T00:00:00 results in null. For most operators, null is not in the

defined set, so null is returned when null is an argument. For example, null is not defined for + so 3+null

results in null.

<num:type> to the left of the := indicates the data type of the result. Unless stated otherwise, the operators

can also return null regardless of the stated usual result.

9.1.3 List Handling

Except as otherwise stated, lists are treated as follows. Each operator must apply the here described list

handling first (if applicable) before the specific list handling as described in the respective operator

description is applied.

When an operator has a template of the form <n:type> := op <n:type> or <n:type> := <n:type> op, the

scalar operator is applied to each element of the list, producing a list with the same number of elements (if

the list is empty, the resulting list is also empty). For example, -(3,4,5) results in -3, -4, -5.

Unary operators that act this way are:

not …

… is present

… is not present

… is null

… is not null

… is Boolean

… is not Boolean

… is number

… is not number

… is time

… is not time

… is time of day

… is not time of day

… is duration

… is not duration

… is string

… is not string

… is fuzzy

… is not fuzzy

… is crisp

… is not crisp

… is object

… is not object

… is <object-type>

… is not <object-type>

+ …

- …

… ago

… year

… years

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 43

Revision date: 10/4/2023 Print date: 10/4/2023

… month

… months

… week

… weeks

… day

… days

… hour

… hours

… minute

… minutes

… second

… seconds

… as number

… as string

… as time

… as truth value

time [of] …

time of day [of] …

arccos [of] …

arcsin [of] …

arctan [of] …

cos [of] …

cosine [of] …

sin [of] …

sine [of] …

tan [of] …

tangent [of] …

exp [of] …

truncate [of] …

floor [of] …

ceiling [of] …

log [of] …

log10 [of] …

abs [of] …

extract year [of] …

extract month [of] …

extract day [of] …

extract hour [of] …

extract minute [of] …

extract second [of] …

int …

round …

sqrt …

string …

length [of] …

uppercase …

lowercase …

trim …

localized …

defuzzified …

applicability [of] …

When an operator has a template of the form <1:type> := op <n:type> or <1:type> := <n:type> op, the

operator is applied to the entire list, producing a single element. For example, max(3,4,5) results in 5.

Unary operators that act this way are:

count [of] …

exist [of] …

Arden Syntax for Medical Logic Systems

Page 44 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

avg [of] …

average [of] …

median [of] …

sum [of] …

stddev [of] …

variance [of] …

any [of] …

all [of] …

no [of] …

min [of] …

minimum [of] …

max [of] …

maximum [of] …

last [of] …

first [of] …

earliest [of] …

latest [of] …

string [of] …

… is list

… is not list

index min [of] …

index minimum [of] …

index max [of] …

index maximum [of] …

index earliest [of] …

index latest [of] …

When an operator has a template of the form <m:type> := op <n:type> or <m:type> := <n:type> op, the

operator is applied to the entire list, producing another list. For example, increase(11,15,13,12) results in

(4, -2, -1).

Unary operators that act this way are:

slope [of] …

increase [of] …

decrease [of] …

percent increase [of] …

% increase [of] …

percent decrease [of] …

% decrease [of] …

interval [of] …

extract characters [of] …

sort [data|time] …

reverse …

When an operator has a template of the form <n:type> := <n:type> op <n:type>, the scalar operator is

applied pair-wise to the elements of the lists, producing a list with the same number of elements (if the list

is empty, the resulting list is also empty). For example, (1,2)+(3,4) results in (4,6) and ()+() results in ().

If one of the operands is a single element and the other operand has n elements, the single element is

replicated n times. For example, 1+(3,4) is equivalent to (1,1)+(3,4) and results in (4,5).

If the numbers of elements in the two arguments differ and one argument is not a single element, the result

is null.

Binary operators that act this way are:

… or …

… and …

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 45

Revision date: 10/4/2023 Print date: 10/4/2023

… = …

… eq …

… is …

… <> …

… ne …

… is not equal …

… < …

… lt …

… is less than …

… is not greater than or equal …

… <= …

… le …

… is less than or equal …

… is not greater than …

… > …

… gt …

… is greater than …

… is not less than or equal …

… >= …

… ge …

… is greater than or equal …

… is not less than …

… is within past …

… is not within past …

… is within same day as …

… is not within same day as …

… is before …

… is not before …

… is after …

… is not after …

… occur equal …

… occur within past …

… occur not within past …

… occur within same day as …

… occur not within same day as …

… occur before …

… occur not before …

… occur after …

… occur not after …

… + …

… - …

… * …

… / …

… ** …

… before …

… after …

… from …

localized … by …

replace year [of] … with …

replace month [of] … with …

replace day [of] … with …

replace hour [of] … with …

replace minute [of] … with …

replace second [of] … with …

The following operators are of the form <n:type> := <m:type> op <m:type>; they replicate the arguments

if necessary but may return a list with a different number of elements:

Arden Syntax for Medical Logic Systems

Page 46 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

… where …

When an operator has a template of the form <n:type> := <n:type> op1 <n:type> op2 <n:type>, the scalar

operator is applied triple-wise to each element of the lists, producing a list with the same number of

elements (if the list is empty, the resulting list is also empty). For example, (1, 2) is within (0, 2) to (3, 4)

results in (true, true).

If one of the operands is a single element and the other operands have n elements, the single element is

replicated n times. If two of the operands are a single element and the other operand has n elements, the

single elements are replicated n times. For example, (1, 2) is within 2 to (3, 4) is equivalent to (1, 2) is

within (2, 2) to (3, 4) and results in (false, true).

If the number of elements in any pair of arguments differ and one argument is not a single element, the

result is null.

Ternary operators that act this way are:

… is within … to …

… is not within … to …

… is within … preceding …

… is not within … preceding …

… is within … following …

… is not within … following …

… is within … surrounding …

… is not within … surrounding …

… occur within … to …

… occur not within … to …

… occur within … preceding …

… occur not within … preceding …

… occur within … following …

… occur not within … following …

… occur within … surrounding …

… occur not within … surrounding …

When an operator has a template of the form <n:type> := op1 <1:type> op2 <m:type>, the operator is

applied to the entire second argument, producing a new list. The first argument must be a single element (if

not, the result of the operator is null). For example, min 2 from (5, 3, 4) results in (3, 4).

Binary operators that act this way are:

min … from …

minimum … from …

max … from …

maximum … from …

last … from …

first … from …

latest … from …

earliest … from …

index min … from …

index minimum … from …

index max … from …

index maximum … from …

index earliest … from …

index of … from …

add … to …

at least … from …

at most … from …

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 47

Revision date: 10/4/2023 Print date: 10/4/2023

When an operator has a template of the form <n:type> := op1 <n:type> op2 <m:type>, the operator is

applied to the entire second argument, producing a new list. The first argument is typically a single

element. For example, 1 is in (0, 3) results in false and (1, 2, 3) is in (0, 3) results in (false, false, true).

Binary operators that act this way are:

nearest … from …

… is in …

… is not in …

index nearest … from …

remove … from …

When an operator has a template of the form <n:type> := <k:type> op <m:type>, the operator is applied

to the entire two lists, producing a new list. For example, 1, (3, 4) results in (1, 3, 4).

Binary operators that act this way are:

… , …

… merge …

… || …

… seqto …

9.1.4 Primary Time Handling

Queries attach primary times to their results (see Section 8.9.1). Some operators maintain those primary

times and others lose them. Except as otherwise stated, primary times are treated as follows.

9.1.4.1 Unary Operators

Unary operators maintain primary times. In this example, result1 still has primary times attached if data1

is the result of a query:

result1 := sin(data1);

9.1.4.2 Binary and Ternary Operators

Binary and ternary operators maintain primary times if all operands have primary times and all of the

primary times are equal. If any operand is missing a primary time or if the primary times are not all equal,

the primary time is lost.

Example (primary times are the same, the primary time is kept):

Data Values: 6 := 2 * 3;

Time Values: (Jan 1) (Jan 1) (Jan 1);

Example (primary times are different, then primary time is lost):

Data Values: 42 := 6 * 7;

Time Values: (null) (Feb 1) (Jan 1);

9.1.5 Time-of-Day Handling

Operators that are defined for operands of "any" type, ordered types, etc. are not affected by time-of-day

values. For example, aggregation operators such as the average operator still compute a result from a

homogeneous list of time-of-day values, but return null if time-of-day values and time values are combined.

Those operators that can be used with combined time-of-day and time values are defined in the next

sections.

9.1.5.1 Default Time-of-Day Handling

Some binary and ternary operators can combine time and time-of-day values as operands as defined in the

next section. In this case, as the time-of-day data type is a sub-type of the time data type, the operators

automatically use the common information part of the operands, which is the time-of-day-fraction of the

Arden Syntax for Medical Logic Systems

Page 48 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

given time value, and ignore the date information of the other operand (see examples of simple comparison

operators in Section 9.5).

Operators that follow the default time-of-day handling are

- simple comparison operators (Section 9.5)

- is after/before (Section 9.6.12, 9.6.13)

9.1.5.2 Role of Midnight

Operators where the order of the arguments may indicate that the midnight boundary may be spanned are

is within ... to … (Section 9.6.6)

- is within ... to … preceding/following (Section 9.6.7, 9.6.8)

- is within … to … surrounding … (Section 9.6.9)

- Arithmetic operators (Section 9.9)

9.1.5.3 Undefined Operators for Time-of-Day Values

Operators for which time-of-day data types are not allowed as arguments are

• ‘is within same day as’: undefined for time-of-day operands as the required information for the

comparison (date) is not present; returns null

• ‘within past’: undefined for time-of-day operands as the reference of the comparison is usually a

fixed date and time; returns null

9.1.6 Applicability Handling

In general, every binary and ternary operator calculates the applicability of its result as the minimum of the

applicability values of all parameters if not stated otherwise in the following definitions. Every unary

operator sets the applicability of its result to 1 if not otherwise stated below. These rules also apply to the

component-wise application of the operator on elements of lists.

9.1.7 Operator Precedence

Expressions are nested structures, which may contain more than one operator and several arguments. The

order in which operators are executed is decided by using an operator property called precedence.

Operators groups into several precedence groups. Operators of higher precedence are performed before

operators of lower precedence. For example, the expression 3+4*5 (three plus four times five) is executed

as follows: since * has higher precedence than +, it is performed first so that 4*5 results in 20; then + is

performed so that 3+20 results in 23. Parentheses can always be used to override operator precedence.

9.1.7.1 Precedence Table

The operators are shown grouped by precedence in Annex A4.

9.1.8 Associativity

When an expression contains more than one operator within the same precedence group, the operators’

associativity property decides the order of execution. The associativity of each operator is shown in Annex

A4. There are three types of associativity:

9.1.8.1 Left

Left-associative operators are executed from left to right. For example, 3-4-5 has two subtractions (-). Since

they are the same operator, they must be in the same precedence group. Since - is left-associative, 3-4 is

performed first resulting in (-1); then (-1)-5 is performed, resulting in (-6).

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 49

Revision date: 10/4/2023 Print date: 10/4/2023

9.1.8.2 Right

Right-associative operators are executed from right to left. For example, average sum 3 has two operators

in the same precedence group. Since they are right-associative, sum 3 is performed first resulting in 3; then

average 3 is performed, resulting in 3.

9.1.8.3 Non-Associative

Non-associative operators cannot have more than one operator from the same precedence group in the same

expression unless parentheses are used. Thus the expression 2**3**4 is illegal since ** (the exponentiation

operator) is non-associative (however, (2**3)**4 and 2**(3**4) are both legal).

9.1.9 Parentheses

One can use parentheses to force a different order of execution. Expressions within parentheses are always

performed before ones outside of parentheses. For example, the expression (3+4)*5 is executed as follows:

3+4 is within parentheses, so it is performed first regardless of precedence, resulting in 7; then * is

performed so that 7*5 results in 35. Similarly, (2**3)**4 is a legal expression which results in 4096.

9.2 List Operators

The list operators do not follow the default list handling. Primary times and applicabilities are maintained

according to Section 9.1.4, unless otherwise specified.

9.2.1 , (binary, left-associative)

Binary, (list concatenation) appends two lists. Primary times and applicabilities of the individual list

elements are maintained. Its usage is:

<n:any-type> := <k:any-type>, <m:any-type>

(4, 2) := 4, 2

(4, "a", null) := (4, "a"), null

9.2.2 , (unary, non-associative)

Unary, turns a single element into a list of length one. It does nothing if the argument is already a list. Its

usage is (where (3) means a list with 3 as its only element):

<1:any-type> := , <1:any-type>

(3) := , 3

9.2.3 Merge (binary, left-associative)

The merge operator appends two lists, appends a single item to a list, or creates a list from two single

items. It then sorts the result in chronological order based on the primary times of the elements (as defined

in Section 9.2.4). All elements of both lists must have primary times; otherwise null is returned (the

construct x where time of it is present can be used to select only elements of x that have

primary times). The primary times and applicabilities are maintained. Merge is typically used to put

together the results of two separate queries. The expression x merge y is equivalent to sort time (x, y). Its

usage is (assuming that data1 has a data value of 2 and a time of 1991-01-02T00:00:00, and that data2 has

data values 1, 3 and time values 1991-01-01T00:00:00, 1991-01-03T00:00:00):

<n:any-type> := <k:any-type> MERGE <m:any-type>

(1, 2, 3) := data1 MERGE data2

null := (4, 3) MERGE (2, 1)

9.2.4 Sort (unary, non-associative)

The sort operator reorders a list based on element contents, which are either the element values (keyword

data) the primary times (keyword time), or the applicability (keyword applicability). An optional modifier

may be used with the sort operator. If used, the modifier must be placed immediately after the sort

keyword. The following keywords can be placed after the sort keyword: data, time, or applicability,

Arden Syntax for Medical Logic Systems

Page 50 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

which are mutually exclusive. If no modifier is used, the sort operator defaults to a data sort. Direction of

sorting is always ascending. For a descending sort, reverse can be used.

The sort options are considered to be part of the sort operator for precedence purposes. This resolves the

potential conflict with the time [of] operator (9.17.1). Thus the expression "sort time x" should be parsed

as "sort the list x by time" rather than as "extract the primary times from the list x and sort the list of times."

When sorting by primary times, if any of the elements do not have primary times, the result is null. (The

sort argument can always be qualified by where time of it is present, if this is not desired behavior.)

Elements with the same key will be kept in the same order as they appear in the argument. If any pair of

element key cannot not be compared because of type clashes, sort returns null (that is, when sorting by

data, any null value (or non-comparable value) results in null; when sorting by time, any null primary time

results in null). The sorting by applicabilities is defined equivalent to sorting by primary times. Its usage is

(assuming that data1 has a data value of 30,10,20 with time values 1991-01-01T00:00:00, 1991-02-

01T00:00:00, 1991-01-03T00:00:00 and applicability values truth value 0.7, truth value 0.5, truth value

0.3):

<n:any-type> := SORT <n:any-type>

<n:any-type> := SORT [DATA | TIME | APPLICABILITY] <n:any-type>

(10, 20, 30) := SORT DATA data1;

(30, 20, 10) := REVERSE (SORT DATA data1);

null := SORT DATA (3, 1, 2, null);

null := SORT DATA (3, "abc");

() := SORT TIME ();

(1, 2, 3, 3) := SORT (1, 3, 2, 3);

(30, 20, 10) := SORT TIME data1;

(20, 10, 30) := SORT APPLICABILITY data1;

(30, 10, 20) := REVERSE (SORT APPLICABILITY data1);

null := SORT APPLICABILITY (3, 1, 2, null);

() := SORT APPLICABILITY ();

The optional modifier using ... can be appended to the sort operator to control the calculation of the

ordering. Thus, the following expressions can be used to sort the list by the data or the primary times of the

elements:

<n:any-type> := sort <n:any-type> using it; // for sorting by data

<n:any-type> := sort <n:any-type> using time of it; // for sorting by time

The above mentioned expressions will be equivalent to the currently available expressions sort time and

sort data. However, the using operator can be used to sort the list by an arbitrary calculation applied to

each element of the list, e.g.:

<n:any-type> := sort <n:any-type> using sin it; // for sorting the list by

// the sin of each value

<n:any-type> := sort <n:any-type> using abs it; // for sorting the list by

// absolute values of the list elements

<n:any-type> := sort <n:any-type> using extract month it; // for sorting the

// list by month part of the list elements

If the using operator is applied to a list of objects, the list may be sorted by a specified field of the given

objects, e.g.:

<n:object> := sort <n:object> using it.height; // for sorting the objects by

// their field "height"

<n:any-type> := sort <n:any-type> using time of it.value; // for sorting the

// objects by the primary time of their field "value"

The modifier using can contain any complex expression incorporating the it keyword.

9.2.5 Add … To … [At …] (ternary, non-associative)

The add ... to ... [at ...] operator expects an arbitrary data value as its first argument and a list as its second

argument. It adds this element to the given list. If no position is given, the element will be added to the end

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 51

Revision date: 10/4/2023 Print date: 10/4/2023

of the list. If a position is provided, the element is inserted at this position and the index of all elements

from this to the end of the list will be increased by one. If the given position is greater than the cardinality

of the list, the element will be appended at the end of the list. In case a negative position or 0 is given, the

element will be appended at the beginning of the list. If the second argument is not a list, the argument is

assumed a list with one element. When more than one position is given, the positions are first identified and

then the elements are inserted. The usage of the add ... to ... [at ...] operator is:

<n+1:any-type> := ADD <1:any-type> TO <n:any-type>

<n+m:any-type> := ADD <1:any-type> TO <n:any-type> AT <m:number>

(1, 2, 3, 4) := ADD 4 TO (1, 2, 3);

(4, 1, 2, 3) := ADD 4 TO (1, 2, 3) AT 1;

(1, 2, 3, null) := ADD null TO (1, 2, 3);

(null, 4) := ADD 4 TO null;

(1, 2, 3, 4) := ADD 4 TO (1, 2, 3) AT 9;

(4, 4, 1, 2, 3) := ADD 4 TO (1, 2, 3) AT (1, -1);

(1, 2, 3, 4) := ADD 2 TO (1, 3, 4) AT INDEX OF 3 WITHIN (1, 3, 4);

(4, 1, 4, 2, 3) := ADD 4 TO (1, 2, 3) AT (1, 2);

9.2.6 Remove … From … (binary, non-associative)

The remove ... from ... operator expects a number or list of numbers as its first argument and a list as its

second argument. The operator also accepts first and last as its first argument, they are interpreted as the

number representing the last (the first) index in the given list. The operator removes the elements with the

given indices from the list. The indices of all elements from the given index to the end of the list will be

decreased by one. If the second argument is not a list, the argument is assumed a list with one element.

When more than one position is given, the positions are first detected and then the elements are removed.

The usage of the remove ... from ... operator is:

<n-m:any-type> := REMOVE <m:number> FROM <n:any-type>

(2, 1) := REMOVE 1 FROM (3, 2, 1);

("two”, 4, 5) := REMOVE (1,3,6) FROM ("one", "two", 3, 4, 5, 6 days);

(3, 2, 1) := REMOVE null FROM (3, 2, 1);

(3, 2, 1) := REMOVE 8 FROM (3, 2, 1);

() := REMOVE (INDEX OF "3" WITHIN ("3", "3")) FROM ("3", "3");

(null) := REMOVE 2 FROM null;

() := REMOVE 1 FROM null;

(3, 2, 1) := REMOVE () FROM (3, 2, 1);

9.3 Where Operator

The where operator does not follow the default list handling or the default time handling.

Arden Syntax for Medical Logic Systems

Page 52 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

9.3.1 Where (binary, non-associative)

The where operator performs the equivalent of a relational select ... where ... on its left argument. In

general, the left argument is a list, often the result of a query to the database. The right argument is usually

of type Boolean (although this is not required) and must be the same length as the left argument. The result

is a list that contains only those elements of the left argument where the corresponding element in the right

argument is Boolean true. If the right argument is anything else, including false, null, or any other type,

then the element in the left argument is dropped. The where operator maintains the primary time(s) and

applicabilities of the operand(s) to the left of where. The primary time(s) of the operand(s) to the right of

where are dropped. Its usage is:

<n:any-type> := <m:any-type> WHERE <m:any-type>

(10, 30) := (10, 20, 30, 40) WHERE (true, false, true, 3);

Example:

7.38 := (7.34, 7.38, 7.4) WHERE time of it is within 20 minutes

following time of VentChange

(1/1 16:20)(1/1 18:01) (1/1 16:20) (Jan 1 02:06)

 (Jan 1 16:12)

Where handles mixed single items and lists in a manner analogous to the other binary operators. If the right

argument to where is a single item, then if it is true, the entire left argument is kept (whether or not it is a

list); if it is not true, then the empty list is returned. If only the left argument is a single item, then the result

is a list with as many of the single items as there are elements equal to true in the right argument. If the two

arguments are lists of different length, then a single null results (the rules in Section 9.1.3 are used to

replicate a single-element argument if necessary). For example,

1 := 1 WHERE true;

(1, 2, 3) := (1, 2, 3) WHERE true;

(1, 1) := 1 WHERE (true, false, true);

null := (1, 2, 3, 4) WHERE (true, false, true);

Where is generally used to select certain items from a list. The list is used as the left argument, and some

comparison operator is applied to the list in the right argument. For example, potassium_list where

potassium_list > 5.0 would select from the list those values that are greater than 5.

Where can be used to filter out invalid data. For example, if a query returns either numeric values or text

comments, the following can be used to select elements from the query that have proper numeric values:

queryResult where they are number

Similarly, if a query returns some values without primary times, the following can be used to select

elements from the query that have proper primary times:

queryResult where time of it is present

In this example, the unary operator time is applied to the queryResult (which is what the value of "it" is),

resulting in a list of times (for those results that have a primary time) and nulls (for those results that do not

have a primary time). The unary operator is present is then applied to that list, give a list of Booleans: true

where there is a primary time and false where there is no primary time. Finally, the where operator is used

to remove those values that do not have primary times.

The following example follows the default time-of-day handling as it combines primary times (time values)

with time-of-day constraints to select those blood glucose values that have been measured after lunch:

post_prandial_blood_glucoses := bc_values where they occurred within 13:00:00
to 15:00:00;

The where operator can also be combined with day-of-week arguments, such as

labResults where day of week of time of them is in (SATURDAY, SUNDAY);

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 53

Revision date: 10/4/2023 Print date: 10/4/2023

9.3.1.1 It

The word it and synonym they are used in conjunction with where. To simplify where expressions, it may

be used in the right argument to represent the entire left argument. For example, potassium_list where

they > 5.0 would select those values from the list that are greater than 5. It is most useful when the left

argument is a complex expression; for example, (potassium_list + sodium_list/3) where it > 5.0 would

assign the entire expression in parentheses to it. If there are nested where expressions, it refers to the left

argument of the innermost where. If it is used outside of a where expression, then it has a value of null. An

implementation of the Arden Syntax may choose to flag use of it outside a where expression as an error at

compile time.

9.4 Logical Operators

9.4.1 Or (binary, left-associative)

The or operator performs the logical disjunction of its two arguments. If either argument is true (even if

the other is not Boolean), the result is true. If both arguments are false, the result is false. If both arguments

are truth values, the maximum of both arguments is returned. Otherwise the result is null. Its usage is as

follows:

<n:truth-value> := <n:any-type> OR <n:any-type>

true := true OR false;

false := false OR false;

true := true OR null;

null := false OR null;

null := false OR 3.4;

truth value 0.4 := false OR (0.4 AS TRUTH VALUE) //see section 9.20.4 (as
truth value)

true := true OR (TRUTH VALUE 0.7)//see section 8.13 (truth values)

truth value 0.5 := (0.5 AS TRUTH VALUE) OR (0.4 AS TRUTH VALUE)

(true, true) := (true, false) OR (false, true)

() := () OR ()

Its truth table is given here. Other means any of these data types: null, number, time, duration, or string.

 OR TRUE other truth

value

Other (Right

argument)

(Left

argument)

TRUE TRUE TRUE TRUE

 other truth

value

TRUE MAX(a, b) NULL

 Other TRUE NULL NULL

9.4.2 And (binary, left-associative)

The and operator performs the logical conjunction of its two arguments. If either argument is false (even if

the other is not Boolean), the result is false. If both arguments are true, the result is true. If both arguments

are truth values, the minimum of both arguments is returned. Otherwise the result is null. Its usage is:

<n:truth-value> := <n:any-type> AND <n:any-type>

false := true AND false;

null := true AND null;

false := false AND (0.4 AS TRUTH VALUE) //see section 9.20.4 (as truth
value);

false := false AND (TRUTH VALUE 0.5)//see section 8.13 (truth values);

Arden Syntax for Medical Logic Systems

Page 54 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

truth value 0.4 := (0.5 AS TRUTH VALUE) AND (0.4 AS TRUTH VALUE);

false := false AND null;

Its truth table is given here. Other means any of these data types: null, number, time, duration, or string.

 AND TRUE other truth

value

other (Right

argument)

(Left

argument)

TRUE TRUE FALSE NULL

 other truth

value

FALSE MIN(a, b) FALSE

 Other NULL FALSE NULL

9.4.3 Not (unary, non-associative)

The not operator performs the logical negation of its argument. If the argument is a truth value, the

negation is the subtraction from 1. Its usage is:

<n:truth-value> := NOT <n:any-type>

true := NOT false

null := NOT null

truth value 0.8 := NOT (0.2 as TRUTH VALUE) //see section 9.20.4 (as truth
value)

0.8 := NOT (TRUTH VALUE 0.2) //see section 8.13 (truth values)

(true, false) := NOT (false, true)

() := NOT ()

Its truth table is given here. Other means any of these data types: null, number, time, duration, or string.

NOT TRUE FALSE Other truth

value

other

 FALSE TRUE 1- truth

value

NULL

9.5 Simple Comparison Operators

9.5.1 = (binary, non-associative)

The = operator has two synonyms: eq and is equal. It checks for equality, returning true or false. If the

arguments are of different types, false is returned. If an argument is null, then null is always returned.

Primary times are not used in determining equality; the primary time of the result is determined by the rules

in Section 9.1.4. Its usage is:

<n:Boolean> := <n:crisp-type> = <n:crisp-type>

false := 1 = 2;

(null, true, false) := (1, 2, "a") = (null, 2, 3);

null := (3/0) = (3/0);

false := 5 = ();

null := (1, 2, 3) = ();

null := null = ();

() := () = ();

null := 5 = null;

(null, null, null) := (1, 2, 3) = null;

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 55

Revision date: 10/4/2023 Print date: 10/4/2023

null := null = null;

(true, true, false) := (1, 2, 3) = (1, 2, 4);

true := 1979-02-25T08:20:00 = 08:20:00;

Use is present or exists instead of = to test whether an argument is equal to null. See Sections 9.6.15 and

9.12.3.

9.5.2 <> (binary, non-associative)

The <> operator has two synonyms: ne and is not equal. It checks for inequality, returning true or false. If

the arguments are of different types, true is returned. If an argument is null, then null is returned. Its usage

is:

<n:Boolean> := <n:crisp-type> <> <n:crisp-type>

true := 1 <> 2;

(null, false, true) := (1, 2, "a") <> (null, 2, 3);

null := (3/0) <> (3/0);

false := 1979-02-25T08:20:00 <> 08:20:00;

9.5.3 < (binary, non-associative)

The < operator has three synonyms: lt, is less than, and is not greater than or equal. It is used on ordered

types; if the types do not match, null is returned. Its usage is:

<n:Boolean> := <n:ordered> < <n:ordered>

true := 1 < 2;

true := 1990-03-02T00:00:00 < 1990-03-10T00:00:00;

true := 1990-03-02T00:00:00 < 13:00:00;

null := 13:00:00 < 14 hours;

true := 2 days < 1 year;

true := "aaa" < "aab";

null := "aaa" < 1;

9.5.4 <= (binary, non-associative)

The <= operator has three synonyms: le, is less than or equal, and is not greater than. It is used on

ordered types; if the types do not match, null is returned. Its usage is:

<n:Boolean> := <n:ordered> <= <n:ordered>

<n:truth-value> := <n:crisp-type> <= <n:fuzzy-type>

true := 1 <= 2;

true := 1990-03-02T00:00:00 <= 1990-03-10T00:00:00;

true := 1990-03-02T00:00:00 <= 13:00:00;

true := 2 days <= 1 year;

true := "aaa" <= "aab";

null := "aaa" <= 1;

In addition, the <= operators support the same arguments as the is [in] operator. Supposing that the first

argument is a crisp type and the second a corresponding fuzzy type, the <= operator then returns the

maximum of u(x) for all x>=r, where r is the value stored in the first argument and u(x) is the fuzzy set

provided by the second argument.

For example:

young := FUZZY SET (0, truth value 1),(15, truth value 1),(20, truth value
0);

middle_aged := FUZZY SET (15, truth value 0),(20, truth value 1),(60, truth
value 1), (70, truth value 0);

truth value 0 := 25 <= young;

truth value 1 := 25 <= middle_aged;

truth value 1 := 10 <= young;

truth value 1 := 10 <= middle_aged;

Arden Syntax for Medical Logic Systems

Page 56 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

truth value 0.5 := 17.5 <= young;

truth value 1 := 17.5 <= middle_aged; // see picture

9.5.5 > (binary, non-associative)

The > operator has three synonyms: gt, is greater than, and is not less than or equal. It is used on ordered

types; if the types do not match, null is returned. Its usage is:

<n:Boolean> := <n:ordered> > <n:ordered>

false := 1 > 2;

false := 1990-03-02T00:00:00 > 1990-03-10T00:00:00;

false := 1990-03-02T00:00:00 > 13:00:00;

false := 2 days > 1 year;

false := "aaa" > "aab";

null := "aaa" > 1;

9.5.6 >= (binary, non-associative)

The >= operator has three synonyms: ge, is greater than or equal, and is not less than. It is used on

ordered types; if the types do not match, null is returned. Its usage is:

<n:Boolean> := <n:ordered> >= <n:ordered>

<n:truth-value> := <n:crisp-type> >= <n:fuzzy-type>

false := 1 >= 2;

false := 1990-03-02T00:00:00 >= 1990-03-10T00:00:00;

false := 1990-03-02T00:00:00 >= 13:00:00;

false := 2 days >= 1 year;

false := "aaa" >= "aab";

null := "aaa" >= 1;

The >= operators further support the same arguments as the is [in] operator. Supposing that the first

argument is a crisp type and the second a fuzzy type, the >= operator then returns the maximum of u(x) for

all r >= x, while r is the value stored in the first argument and u(x) is the fuzzy set provided by the second

argument. For example:

young := FUZZY SET (0, truth value 1), (15, truth value 1), (20, truth value
0);

middle_aged := FUZZY SET (15, truth value 0), (20, truth value 1), (60, truth
value 1), (70, truth value 0);

truth value 1 := 25 >= young;

truth value 1 := 25 >= middle_aged;

truth value 1 := 10 >= young;

truth value 0 := 10 >= middle_aged;

truth value 0.5 := 17.5 >= middle_aged;

truth value 1 := 17.5 >= young; // see picture

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 57

Revision date: 10/4/2023 Print date: 10/4/2023

9.6 Is Comparison Operators

The following comparison operators include the word is, which can be replaced with are, was, or were. An

optional not may follow the is, negating the result (using the definition of not, see Section 9.4.3). For

example, these are valid:

surgery_time WAS BEFORE discharge_time

surgery_time IS NOT AFTER discharge_time

9.6.1 Is [not] Equal (binary, non-associative)

See Section 9.5.1.

9.6.2 Is [not] Less Than (binary, non-associative)

See Section 9.5.3.

9.6.3 Is [not] Greater Than (binary, non-associative)

See Section 9.5.5.

9.6.4 Is [not] Less Than or Equal (binary, non-associative)

See Section 9.5.4.

9.6.5 Is [not] Greater Than or Equal (binary, non-associative)

See Section 9.5.6.

9.6.6 Is [not] Within ... To (ternary, non-associative)

The is within ... to operator checks whether the first argument is within the range specified by the second

and third arguments; the range is inclusive. It is used on ordered types; if the types do not match, null is

returned. When used with time-of-day arguments, the order of the right and middle argument may be

relevant, as the specified time frame may span over midnight.

When used with arguments that are not time-of-day arguments, operator functionally checks the following

relationship

argument 2 <= argument 1 <= argument 3

and returns true if the relationship is satisfied and false if is not satisfied.

Arden Syntax for Medical Logic Systems

Page 58 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

Its usage is:

<n:Boolean> := <n:ordered> IS WITHIN <n:ordered> TO <n:ordered>

true := 3 IS WITHIN 2 TO 5;

false := 3 IS WITHIN 5 TO 2;

true := 1990-03-10T00:00:00 IS WITHIN 1990-03-05T00:00:00 TO 1990-03-
15T00:00:00;

true := 3 days IS WITHIN 2 days TO 5 months;

true := "ccc" IS WITHIN "a" TO "d";

false := 1990-03-10T15:00:00 IS WITHIN 16:00:00 TO 17:00:00;

If the middle and right argument of the last example are swapped, then the reference time frame spans

midnight:

true := 1990-03-10T15:00:00 IS WITHIN 17:00:00 TO 16:00:00;

true := time of day of time of order IS WITHIN 22:00:00 to 02:00:00;

The last example returns true, if the order has been placed after 10 pm and 2 am, independently from the

date of the order. The next example checks whether the measurement has been recorded on a weekday.

true := DAY OF WEEK OF TIME OF measurement IS WITHIN MONDAY TO FRIDAY;

Note that the day of week of a primary time results in a number, as well as the keywords MONDAY and

FRIDAY. The following code snippet is not valid:

null := measurement OCCURRED WITHIN MONDAY to FRIDAY;

Caution must be used when using the day of week data type with the is . . . within operator, as well as the

other comparison operators. Each day of the week is associated with an integer, with Monday = 1 through

Sunday = 7 (see Section 8.12). Thus, the range of days specified can not begin before Monday and end after

Sunday. For example.

true := WEDNESDAY IS WITHIN TUESDAY TO FRIDAY;

true := SATURDAY IS WITHIN FRIDAY TO SUNDAY;

false := SATURDAY IS WITHIN FRIDAY TO MONDAY;

(this returns false because 6 is not within 5 to 1)

9.6.7 Is [not] Within ... Preceding (ternary, non-associative)

The is within ... preceding operator checks whether the left argument is within the inclusive time period

defined by the second two arguments (from the third argument minus the second to the third). Its usage is:

<n:Boolean> := <n:times> IS WITHIN <n:duration> PRECEDING <n:times>

true := 1990-03-08T00:00:00 IS WITHIN 3 days PRECEDING 1990-03-10T00:00:00;

9.6.8 Is [not] Within ... Following (ternary, non-associative)

The is within ... following operator checks whether the left argument is within the inclusive time period

defined by the second two arguments (from the third argument to the third plus the second). Its usage is:

<n:Boolean> := <n:times> IS WITHIN <n:duration> FOLLOWING <n:times>

false := 1990-03-08T00:00:00 IS WITHIN 3 days FOLLOWING 1990-03-10T00:00:00;

9.6.9 Is [not] Within ... Surrounding (ternary, non-associative)

The is within ... surrounding operator checks whether the left argument is within the inclusive time period

defined by the second two arguments (from the third argument minus the second to the third plus the

second). Its usage is:

<n:Boolean> := <n:times> IS WITHIN <n:duration> SURROUNDING <n:times>

true := 1990-03-08T00:00:00 IS WITHIN 3 days SURROUNDING 1990-03-10T00:00:00;

This operator may be used with small durations as a short-hand notation for some comparisons that can be

also represented by using the ‘is within to’ operator.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 59

Revision date: 10/4/2023 Print date: 10/4/2023

Examples:

false := time of day of time of request is within 2 hours surrounding 14:00;

(true, true, true, false, true) := time of day of time of measurements

 are within 30 minutes surrounding 13:00;

9.6.10 Is [not] Within Past (binary, non-associative)

The is within past checks whether the left argument is within the time period defined by the right argument

(now minus the right argument to now). Its usage is (assuming now is 1990-03-09T00:00:00):

<n:Boolean> := <n:times> IS WITHIN PAST <n:duration>

true := 1990-03-08T00:00:00 IS WITHIN PAST 3 days;

null := 12:00:00 IS WITHIN PAST 2 weeks;

9.6.11 Is [not] Within Same Day As (binary, non-associative)

The is within same day as operator checks whether the left argument is on the same day as the second

argument. Its usage is:

<n:Boolean> := <n:time> IS WITHIN SAME DAY AS <n:time>

true := 1990-03-08T11:11:11 IS WITHIN SAME DAY AS 1990-03-08T01:01:01;

null := 12:00:00 IS WITHIN SAME DAY AS 1990-03-08T01:01:01;

9.6.12 Is [not] Before (binary, non-associative)

The is before operator checks whether the left argument is before the second argument; it is not inclusive.

Its usage is:

<n:Boolean> := <n:times> IS BEFORE <n:times>

false := 1990-03-08T00:00:00 IS BEFORE 1990-03-07T00:00:00;

false := 1990-03-08T00:00:00 IS BEFORE 1990-03-08T00:00:00;

9.6.13 Is [not] After (binary, non-associative)

The is after operator checks whether the left argument is after the second argument; it is not inclusive. Its

usage is:

<n:Boolean> := <n:times> IS AFTER <n:times>

true := 1990-03-08T00:00:00 IS AFTER 1990-03-07T00:00:00;

false := now is after 18:00:00;

The last example assumes, that the MLM runs before 18:00 (for example, now is 2005-01-01T17:30:00).

9.6.14 Is [not] In (binary, non-associative)

The is in operator does not follow the default list handling. It checks for membership of the left argument in

the right argument, which is usually a list. If the left argument is a list, then a list results; if the left

argument is a single item, then a single item results. If the right argument is a single item, then it is treated

as a list of length one. If the first operand is null, true is always returned. If the second operand is null then

null is returned, except the first one is also null. Primary times are retained only if they match (that is, the =

operator is used for determining membership, except that null will match). Its usage is:

<n:Boolean> := <n:any-type> IS IN <m:any-type>

false := 2 IS IN (4, 5, 6);

(false, true) := (3, 4) IS IN (4, 5, 6);

true := null is in (1/0, 2);

false := day of week of (time of potassium) IS IN (SATURDAY, SUNDAY);

The operator is in also checks for containment in a fuzzy set, returning a truth value. The arguments are of

a crisp and a fuzzy type. The fuzzy type must be derived from the rough crisp type of the other argument

Arden Syntax for Medical Logic Systems

Page 60 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

(e.g.: if the crisp value is a number, the fuzzy value has to consist of a fuzzy number), otherwise false is

returned. If we define a fuzzy and a crisp number as:

fuzzyVar := Fuzzy Set (0, truth value 0), (4, truth value 1), (5, truth value
0);

crispVar := 2;

The crisp number may be correlated to the fuzzy set by the expression

crispVar IS IN FuzzyVar

This simply gives the value of the fuzzy set (fuzzyVar) the point of the crisp value (crispVar). For the

above example the result will be 0.5.

If one argument is null, then null is always returned.

Primary times are not used in determining the result. The primary time of the result is determined by the

rules in Section 9.1.4. The usage of the … [is] in… operator is:

<n:truth-value> := <n:crisp-type> IS IN <n:fuzzy-type>

truth value 0.5 := 4 IS IN 5 fuzzified by 2;

truth value 0.5 := 2 IS IN Fuzzy Set (0, truth value 0), (4, truth value 1),
(5, truth value 0);

The operator is in used by a FHIR read as statement can also check if a code is part of a valueset. In such

cases the entire valueset might not be known inside the MLM, although it has a resolvable network URL

and is in compliance with the FHIR standard. This specific use case applies only if a Coding object (part of

root FHIR resources such as Observation.code.coding.code or Condition.code.coding.code) is on the left

side of the comparison and the right side is a Valueset object (see Section 12.5.1):

<n:fhir-object-type> := READ AS <n:fhir.object-type> WHERE <return-
value:coding> IS IN <n:Valueset>

/* Defining a valueset by its system URL and identifying code */

include_valueset := NEW Valueset WITH
[system:=”https://fhir.loinc.org/ValueSet”, code:=”LL770-1”];

/* By defining a FHIR read statement the IS IN operator can be applied to a
coding and valueset. The FHIR repository will assert that only
Observations included in the valuset are returned */

fhir_observation := READ AS Observation WHERE it.code.coding.code IS IN
include_valueset;

See also Section 9.6.26.

9.6.15 Is [not] Present (unary, non-associative)

The is present operator has one synonym: is not null. (Similarly, is not present has one synonym: is null.)

It returns true if the argument is not null, and it returns false if the argument is null. Is present never

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 61

Revision date: 10/4/2023 Print date: 10/4/2023

returns null. This operator is used to test whether an argument is null since arg=null always results in null

regardless of arg. Its usage is:

<n:Boolean> := <n:any-type> IS PRESENT

true := 3 IS PRESENT;

false := null IS PRESENT;

(true, false) := (3, null) IS PRESENT;

(false, true) := (3, null) IS NULL;

9.6.16 Is [not] Null (unary, non-associative)

See Section 9.6.15.

9.6.17 Is [not] Boolean (unary, non-associative)

The is Boolean operator returns true if the argument’s data type is Boolean. Otherwise it returns false. Is

Boolean never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS BOOLEAN

true := false IS BOOLEAN;

true := 3 IS NOT BOOLEAN;

(false, true, false) := (null, false,3) IS BOOLEAN;

9.6.18 Is [not] Truth Value (unary, non-associative)

The is Truth Value operator returns true if the argument’s data type is Truth Value. Otherwise it returns

false. Is Truth Value never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS TRUTH VALUE

true := TRUTH VALUE .44 IS TRUTH VALUE;

true := 3 IS NOT TRUTH VALUE;

(false, true, false) := (null, TRUTH VALUE .44, 3) IS TRUTH VALUE;

9.6.19 Is [not] Linguistic Variable (unary, non-associative)

The is Linguistic Variable operator returns true if the argument’s data type is Linguistic Variable.

Otherwise it returns false. Is Linguistic Variable never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS LINGUISTIC VARIABLE

true := RangeOfAge IS LINGUISTIC VARIABLE;

true := 3 IS NOT LINGUISTIC VARIABLE;

(false, true, false) := (null, RangeOfAge,3) IS LINGUISTIC VARIABLE;

9.6.20 Is [not] Number (unary, non-associative)

The is number operator returns true if the argument’s data type is number. Otherwise it returns false. Is

number never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS NUMBER

true := 3 IS NUMBER;

false := null IS NUMBER;

The is number is useful for ensuring that a list is all numbers before an aggregation operator is applied.

This avoids returning null. For example,

sum(serum_K where it IS NUMBER);

9.6.21 Is [not] String (unary, non-associative)

The is string operator returns true if the argument’s data type is string. Otherwise it returns false. Is string

never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS STRING

true := "asdf" IS STRING;

false := null IS STRING;

Arden Syntax for Medical Logic Systems

Page 62 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

9.6.22 Is [not] Time (unary, non-associative)

The is time operator returns true if the argument’s data type is time. Otherwise it returns false. Is time

never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS TIME

true := 1991-03-12T00:00:00 IS TIME;

false := null IS TIME;

9.6.23 Is [not] Time of Day (unary, non-associative)

The is time of day operator returns true if the argument’s data type is time-of-day. Otherwise, it returns

false. Is time of day never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS TIME OF DAY

true := 23:20:00 IS TIME OF DAY;

true := 23:20:00.12 IS TIME OF DAY;

false := 1991-03-12T00:00:00 IS TIME OF DAY;

false := null IS TIME OF DAY;

9.6.24 Is [not] Duration (unary, non-associative)

The is duration operator returns true if the argument’s data type is duration. Otherwise it returns false. Is

duration never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS DURATION

true := (3 days) IS DURATION;

false := null IS DURATION;

9.6.25 Is [not] List (unary, non-associative)

The is list operator returns true if the argument is a list. Otherwise it returns false. Is list never returns null.

Its usage is:

<1:Boolean> := <n:any-type> IS LIST

true := (3, 2, 1) IS LIST;

false := 5 IS LIST;

false := null IS LIST;

The is list operator does not follow the default list handling because it does not operate on each item in the

argument, but rather operates on the argument as a whole. Thus it never returns a list. Notice the difference:

true := (3, 2, "asdf") IS LIST;

(true, true, false) := (3, 2, "asdf") IS NUMBER;

9.6.26 [not] In (binary, non-associative)

The operator in is a synonym of is in and behaves in the same manner. Its usage is:

<n:Boolean> := <n:any-type> IN <m:any-type>

false := 2 IN (4, 5, 6);

(false, true) := (3, 4) IN (4, 5, 6);

true := null in (1/0, 2);

See also Section 9.6.14.

9.6.27 Is [not] Object (unary, non-associative)

The is object operator returns true if the argument is an object (any type of object defined with an Object

declaration, as described in Section 11.2.17). Otherwise it returns false. Its usage is:

<n:Boolean> := <n:any-type> IS OBJECT

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 63

Revision date: 10/4/2023 Print date: 10/4/2023

9.6.28 Is [not] <Object-Type> (unary, non-associative)

The is <object-type> operator returns true if the argument is an object of the named type (as previously

defined with an Object declaration, as described in Section 11.2.17). Otherwise it returns false. Its usage is:

<n:Boolean> := <n:any-type> IS <OBJECT-TYPE>

RectType := OBJECT [x, y, width, height];

Rect := new RectType;

true := Rect IS RectType;

9.6.29 Is [not] Fuzzy (unary, non-associative)

The is fuzzy operator returns true if the argument’s data type is a fuzzy number, fuzzy time or fuzzy

duration. Otherwise it returns false. Is fuzzy never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS FUZZY

false := 3 IS FUZZY;

true := (FUZZY SET (0, truth value 0), (1, truth value 1)) IS FUZZY;

true := (today fuzzified by 2 days) IS FUZZY;

9.6.30 Is [not] Crisp (unary, non-associative)

The is crisp operator returns true if the argument’s data type is not a fuzzy number, fuzzy time or fuzzy

duration. Otherwise it returns false. Is crisp never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS CRISP

true := 3 IS CRISP;

false := (FUZZY SET (0, truth value 0), (1, truth value 1)) IS CRISP;

false := (today fuzzified by 2 days) IS CRISP;

9.7 Occur Comparison Operators

9.7.1 General Properties

The following comparison operators are analogous to the is comparison operators in Section 9.6. They use

the word occur instead of is. The word occur can be replaced with occurs or occurred. An optional not

may follow the occur, negating the result (using the definition of not, see Section 9.4.3).

The effect is that rather than using the left argument directly, the primary time of the left argument is used

instead (that is, the time of the left argument is used; see Section 9.17). The following pairs are equivalent

expressions:

time of var IS NOT BEFORE 1990-03-05T11:11:11

var OCCURRED NOT BEFORE 1990-03-05T11:11:11

time of surgery IS WITHIN THE PAST 3 days

surgery OCCURRED WITHIN THE PAST 3 days

time(a) IS WITHIN 1990-03-05T11:11:11 TO time(b)

a OCCURRED WITHIN 1990-03-05T11:11:11 TO time(b)

In the following operator examples, query_result is the result of a query; its primary time is 1990-03-

05T11:11:11; and now is 1990-03-06T00:00:00.

Day-of-week data types are not allowed as arguments to occur comparison operators at this time. Time-of-

day data types are allowed and follow standard time-of-day processing.

9.7.2 Occur [not] Equal (binary, non-associative)

<n:Boolean> := <n:any-type> OCCUR EQUAL <n:times>

false := query_result OCCURRED EQUAL 1990-03-01T00:00:00;

See also Section 9.7.11.

Arden Syntax for Medical Logic Systems

Page 64 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

9.7.3 Occur [not] Within ... To (ternary, non-associative)

<n:Boolean> := <n:any-type> OCCUR WITHIN <n:times> TO <n:times>

true := query_result OCCURRED WITHIN 1990-03-01T00:00:00 TO 1990-03-
11T00:00:00;

9.7.4 Occur [not] Within ... Preceding (ternary, non-associative)

<n:Boolean> := <n:any-type> OCCUR WITHIN <n:duration> PRECEDING <n:times>

false := query_result OCCURRED WITHIN 3 days PRECEDING 1990-03-10T00:00:00;

9.7.5 Occur [not] Within ... Following (ternary, non-associative)

<n:Boolean> := <n:any-type> OCCUR WITHIN <n:duration> FOLLOWING <n:times>

false := query_result OCCURRED WITHIN 3 days FOLLOWING 1990-03-10T00:00:00;

9.7.6 Occur [not] Within . . . Surrounding (ternary, non-associative)

<n:Boolean> := <n:any-type> OCCUR WITHIN <n:duration> SURROUNDING <n:times>

false := query_result OCCURRED WITHIN 3 days SURROUNDING 1990-03-10T00:00:00;

false := request occurred within 2 hours surrounding 14:00

(true, true, true, false, true) := measurements occurred within 30 minutes
surrounding 13:00;

9.7.7 Occur [not] Within Past (binary, non-associative)

<n:Boolean> := <n:any-type> OCCUR WITHIN PAST <n:duration>

true := query_result OCCURRED WITHIN PAST 3 days;

9.7.8 Occur [not] Within Same Day As (binary, non-associative)

<n:Boolean> := <n:any-type> OCCUR WITHIN SAME DAY AS <n:time>

false := query_result OCCURRED WITHIN SAME DAY AS 1990-03-08T01:01:01;

null := query_result OCCURRED WITHIN SAME DAY AS 01:01:01;

9.7.9 Occur [not] Before (binary, non-associative)

<n:Boolean> := <n:any-type> OCCUR BEFORE <n:times>

true := query_result OCCURRED BEFORE 1990-03-08T01:01:01;

9.7.10 Occur [not] After (binary, non-associative)

<n:Boolean> := <n:any-type> OCCUR AFTER <n:times>

false := query_result OCCURRED AFTER 1990-03-08T01:01:01;

9.7.11 Occur [not] At (binary, non-associative)

The occur at operator functionally identical to the occur equal operator.

<n:Boolean> := <n:any-type> OCCUR AT <n:times>

false := query_result OCCURRED AT 1990-03-01T00:00:00;

See Section 9.7.2.

9.8 String Operators

The string operators do not follow the default list handling or the default primary time handling.

9.8.1 || (binary, left-associative)

The || operator (string concatenation) converts its arguments to strings and then concatenates those strings

together. The null data type is converted to the string null and then appended to the other argument. Thus ||

never returns null. Lists are converted to strings and then appended to the other argument; the list is

enclosed in parentheses and the elements are separated by , with no separating blanks. The string

representation of Booleans, numbers, times, and durations is location-specific to allow for the use of the

native language. The formatted with operators %s operator is used to convert values to strings (see

Section 9.8.2). The string operator is a generalization of the || operator (see Section 9.8.3), except that the

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 65

Revision date: 10/4/2023 Print date: 10/4/2023

string operator does not do anything special for lists. The primary times of its arguments are lost. Its usage

is:

<1:string> := <m:any-type> || <n:any-type>

"null3" := null || 3;

"45" := 4 || 5;

"4.7four" := 4.7 || "four";

"true" := true || "";

"3 days left" := 3 days || " left";

"on 1990-03-15T13:45:01" := "on " || 1990-03-15T13:45:01;

"list=(1,2,3)" := "list=" || (1, 2, 3);

9.8.2 Formatted With (binary, left-associative)

The formatted with operator allows a formatting string to be used for additional control over how data

items are output. The formatting string is similar to the ANSI C language printf control string, with

additional ability to format an Arden time. Its usage is

<string> := <data> formatted with <format_string>

"01::02::03" := (1, 2, 3) formatted with "%2.2d::%2.2d::%2.2d";

"The result was 10.61 mg"

:= 10.60528 formatted with "The result was %.2f mg";

"The date was Jan 10 1998"

:= 1998-01-10T17:25:00 formatted with "The date was %.2t";

"The year was 1998"

:= 1998-01-10T17:25:00 formatted with "The year was %.0t";

/* longer example */

a := "ten";

b := "twenty";

c := "thirty";

f := "%s, %s, %s or more";

"ten, twenty, thirty or more" := (a, b, c) formatted with f;

If data is a single item, it serves as the single parameter for format string substitution. If data is a list, the

list is not formatted as a list. Instead, it is assumed to be a list of parameters for format string substitution.

Parameters are substituted into the format string as described below, which becomes the result of the

operation.

A format string consists of a literal string and typically contains 1 or more format specifications.

A format specification, which consists of optional and required fields, has the following form:

%[flags][width][.precision]type

Each field of the format specification is a single character or a number signifying a particular format

option. The simplest format specification contains only the percent sign and a type character (for example,

%s). If a percent sign is followed by a character that has no meaning as a format field, the character is not

revised. For example, to print a percent-sign character, use %%.

Note that to retain compatibility with C language functions, several formatting type specifiers have been

retained that will probably not be useful to the Arden MLM author. The most likely format specification

types an MLM author will use are:

%c (for outputting special characters)

%s (string width control)

%d (integer formatting)

%t (time formatting)

%e (floating point number formatting with exponent)

Arden Syntax for Medical Logic Systems

Page 66 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

%f (floating point number formatting without exponent)

%g (floating point number formatting using %e or %f)

A complete description of supported types within the format specification can be found in Annex A5.

9.8.3 String ... (unary, right-associative)

The string operator expects a string or list of strings as its argument. It returns a single string made by

concatenating all the elements, as the || operator (see Section 9.8.1). If the argument is an empty list, the

result is the empty string (""). The element operator (Section 9.12.18) can be used to select certain items

from the list. The primary times of its arguments are lost. Its usage is:

<1:string> := STRING <m:string>

<1:string> := STRING <m:list of strings>

"abc" := STRING ("a", "b", "c");

"abc" := STRING ("a", "bc");

"" := STRING ();

"edcba" := STRING REVERSE EXTRACT CHARACTERS "abcde";

9.8.4 Matches Pattern (binary, non-associative)

The effect of this operator is similar to the LIKE operator in SQL (ISO / IEC 9075). Matches pattern is

used to determine whether or not a particular string matches a pattern. This operator expects two string

arguments. The first argument is a string to be matched, and the second is the pattern used for matching.

Matches pattern returns a Boolean value: true if the pattern of the second argument matches the first

argument and false if it does not. The first argument also may be a list of strings, in which case the result is

a list of Boolean values, each corresponding to the match between one string and the pattern of the second

argument. If the arguments are not strings, null is returned. Matching is case-insensitive. The primary times

of the arguments are lost.

The pattern of the second argument may be any legal string character. In addition, two wild-card characters

may be used. The underscore (_) will match exactly any one character. The percent sign (%) will match 0

to arbitrarily many characters. In order to match one of the literal wild-card character, precede it with an

escape (\) character.

<n:Boolean> := <n:string> MATCHES PATTERN <1:string>

true := "fatal heart attack" MATCHES PATTERN "%heart%";

false := "fatal heart attack" MATCHES PATTERN "heart";

true := "abnormal values" MATCHES PATTERN "%value_";

false := "fatal pneumonia" MATCHES PATTERN "%pulmonary%";

(true, false) := ("stunned myocardium", "myocardial infarction") MATCHES
PATTERN "%myocardium";

true := "5%" MATCHES PATTERN "_\%";

9.8.5 Length (unary, right-associative)

The length operator returns the number of characters in a string. Leading or trailing spaces are included in

this calculation. Applying the length operator to an empty string returns zero, while the length of a non-

string data type or an empty list is null. The length operator is different from the count operator (see

Section 9.12.2), in that length is the number of characters in a single string, while count is the number of

items in a list. Primary times are not preserved.

 <n:number> := LENGTH [OF] <n:string>

 7 := LENGTH OF "Example";

 14 := LENGTH "Example String";

 0 := LENGTH "";

 null := LENGTH ();

 null := LENGTH OF null;

(8, 3, null) := LENGTH OF ("Negative", "Pos", 2);

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 67

Revision date: 10/4/2023 Print date: 10/4/2023

9.8.6 Uppercase (unary, right-associative)

The uppercase operator converts all lowercase characters in a string to uppercase. Non-lowercase

characters, including numeric and punctuation characters, are not affected. The uppercase of a non-string

data type or an empty list is null. Primary times are preserved.

 <n:string> := UPPERCASE <n:string>

 "EXAMPLE STRING" := UPPERCASE "Example String";

 "" := UPPERCASE "";

 null := UPPERCASE null;

 null := UPPERCASE ();

("5-HIAA", "POS", null) := uppercase ("5-Hiaa", "Pos", 2);

9.8.7 Lowercase (unary, right-associative)

The lowercase operator converts all uppercase characters in a string to lowercase. Non-uppercase

characters, including numeric and punctuation characters, are not affected. The lowercase of a non-string

data type or empty list is null. Primary times are preserved.

 <n:string> := LOWERCASE <n:string>

 "example string" := LOWERCASE "Example String";

 "" := LOWERCASE "";

 null := LOWERCASE 12.8;

 null := LOWERCASE null;

("5-hiaa", "pos", null) := LOWERCASE ("5-HIAA", "Pos", 2);

9.8.8 Trim [Left | Right] (unary, right-associative)

The trim operator removes leading and trailing white space from a string (see Section 7.1.20). The optional

left or right modifier can be applied to remove leading or trailing white space respectively. Printable

characters and embedded white space characters are not affected. The trim of a non-string data type or

empty list is null. Primary times are preserved.

 <n:string> := TRIM [LEFT | RIGHT] <n:string>

 "example" := TRIM " example ";

 "" := TRIM "";

 null := TRIM ();

 "result: " := TRIM LEFT " result: ";

 " result:" := TRIM RIGHT " result: ";

("5 N", "2 E", null) := TRIM (" 5 N", "2 E ", 2);

9.8.9 Find...[in] String...[starting at]... (ternary, right-associative)

The find ... string operator locates a substring within a target string, and returns a number that represents

the starting position of the substring. Find ... string is similar to matches pattern, but returns a number

(rather than a boolean), and does not support wildcards. Find ... string is case-sensitive, and returns a zero

if the target string does not contain the exact substring. If either the substring or target is not a string data

type, null is returned. Primary times are not preserved.

The optional modifier starting at... can be appended to the find ... string operator to control where the

search for the substring begins. Omitting the modifier causes the search to begin at the first character of the

string. The value following starting at... must be an integer, otherwise null is returned. If the value

following starting at... is an integer beyond the length of the target string (i.e. less than 1 or greater than

length target), zero is returned.

<n:number> := FIND <1:string> [IN] STRING <n:string>

<n:number> := FIND <1:string> [IN] STRING <n:string> [STARTING AT <n:number>]

 3 := FIND "a" IN STRING "Example Here";

 5 := FIND "ple" IN STRING "Example Here";

 0 := FIND "s" IN STRING "Example Here";

 null := FIND 2 IN STRING "Example Here";

 null := FIND "a" STRING 510;

Arden Syntax for Medical Logic Systems

Page 68 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 (2, 0, 4) := FIND "t" STRING ("start", "meds", "halt");

 7 := FIND "e" IN STRING "Example Here" STARTING AT 1;

 1 := FIND "e" IN STRING LOWERCASE "Example Here" STARTING AT 1;

 10 := FIND "e" IN STRING "Example Here" STARTING AT 8;

 10 := FIND "e" IN STRING "Example Here" STARTING AT 10;

 12 := FIND "e" IN STRING "Example Here" STARTING AT 11;

 0 := FIND "e" IN STRING "Example Here" STARTING AT 13;

 null := FIND "e" IN STRING "Example Here" STARTING AT 1.5;

 null := FIND "e" IN STRING "Example Here" STARTING AT "x";

 (10, 12) := FIND "e" IN STRING "Example Here" STARTING AT (10, 11);

9.8.10 Substring … Characters [starting at …] from … (ternary, right-associative)

The substring … characters [starting at …] from … operator returns a substring of characters from a

designated target string. This substring consists of the specified number of characters from the source string

beginning with the starting position (either the first character of the string or the specified location within

the string). For example substring 3 characters starting at 2 from "Example" would return "xam" – a 3

character string beginning with the second character in the source string "Example".

The target string must be a string data type, the starting location within the string must be a positive integer,

and the number of characters to be returned must be an integer, or the operator returns null. If a starting

position is specified, its value must be an integer between 1 and the length of the string, otherwise an empty

string is returned. If the requested number of characters is greater than the length of the string, the entire

string is returned. If a starting point is specified, and the requested number of characters is greater than the

length of the string minus the starting point, the resulting string is the original string to the right of and

including the starting position. If the number of characters requested is positive the characters are counted

from left to right. If the number of characters requested is negative, the characters are counted from right to

left. The characters in a substring are always returned in the order that they appear in the string. Default list

handling is observed. Primary times are preserved.

 <n:string> := SUBSTRING <n:number> CHARACTERS [STARTING AT <n:number>]
 FROM <n:string>

 "ab" := SUBSTRING 2 CHARACTERS FROM "abcdefg";

 "abcdefg" := SUBSTRING 100 CHARACTERS FROM "abcdefg";

 "def" := SUBSTRING 3 CHARACTERS STARTING AT 4 FROM "abcdefg";

 "defg" := SUBSTRING 20 CHARACTERS STARTING AT 4 FROM "abcdefg";

 null := SUBSTRING 2.3 CHARACTERS FROM "abcdefg";

 null := SUBSTRING 2 CHARACTERS STARTING AT 4.7 FROM "abcdefg";

 null := SUBSTRING 3 CHARACTERS STARTING AT "c" FROM "abcdefg";

 null := SUBSTRING "b" CHARACTERS STARTING AT 4 FROM "abcdefg";

 null := SUBSTRING 3 CHARACTERS STARTING AT 4 FROM 281471;

 "d" := SUBSTRING 1 CHARACTERS STARTING AT 4 FROM "abcdefg";

 "d" := SUBSTRING –1 CHARACTERS STARTING AT 4 FROM "abcdefg";

 "bcd" := SUBSTRING –3 CHARCTERS STARTING AT 4 FROM "abcdefg";

 "a" := SUBSTRING 1 CHARACTERS FROM "abcdefg";

 "g" := SUBSTRING –1 CHARACTERS STARTING AT LENGTH OF "abcdefg"

 FROM "abcdefg";

 ("Pos", "Neg", null) := SUBSTRING 3 CHARACTERS FROM ("Positive", "Negative", 2);

Example: Determine the systolic and diastolic values of patient’s blood pressure when observations (bp)

 are stored as strings like this: "98/72", "121/86", or "138/102".

bp := "121/86";

slash_pos := FIND "/" IN STRING bp;

systolic := SUBSTRING (slash_pos – 1) CHARACTERS FROM bp;

 or

systolic := SUBSTRING –3 CHARACTERS STARTING AT (slash_pos - 1) FROM bp;

diastolic := SUBSTRING 3 CHARACTERS STARTING AT (slash_pos + 1) FROM bp;

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 69

Revision date: 10/4/2023 Print date: 10/4/2023

 or

diastolic := SUBSTRING (LENGTH of bp) CHARACTERS STARTING AT (slash_pos + 1)
FROM bp;

9.8.11 Localized (unary, non-associative)

The localized operator returns a string that has been previously defined in the language slot of the MLM’s

resources category. The string is looked up by choosing the key/value pair defined in the language slot that

matches the current language setting of the system which executes the MLM. The argument of the operator

specifies the term that is used as key to lookup the value for one specific text resource.

Retrieving the current language setting is implementation specific. If the language cannot be retrieved or no

language slot is defined for the current language, the default language of the resources category is used. If

the term is not defined in the chosen language slot or if the argument is not a Term, null is returned.

According to the examples in Section 6.4.2 its usage is:

<n:string> := LOCALIZED <n:term>

 "Caution, the patient has
the following allergy to
penicillin documented: " := localized 'msg';

 "The patient's calculated
creatinine clearance is
0.33 ml/min." := creat formatted with localized 'creat';

 null := localized 'unknown';

Or in a German setting:

 "Vorsicht, zu diesem Patienten
wurde die folgende
Penicillinallergie
dokumentiert: " := localized 'msg';

 "Die berechnete Kreatinin-
Clearance des Patienten
beträgt 0,33 ml/min." := creat formatted with localized 'creat';

 null := localized 'unknown';

9.8.12 Localized (binary, right-associative)

The binary localized operator acts like the unary version of this operator and additionally allows the

selection of the target language as second argument. As second operator, either a string constant or a

variable can be used. Other expressions are not valid.

This operator can be used if the language of the message has to be different from the current language in

the system setting, for example when the system language is English (as the user operates in an English

environment), but the recipient of the message text requires another language, such as German.

Regarding the lookup mechanism and the default language handling it acts in the same way like the unary

version. In addition, if the second argument does not resolve to a string, the default language is used. Its

usage is:

<n:string> := LOCALIZED <n:term> by <n:string>

 "Caution, the patient has
the following allergy to
penicillin documented: " := localized 'msg' by "en_US";

 "Die berechnete Kreatinin-
Clearance des Patienten
beträgt 0,33 ml/min." := creat formatted with localized 'creat' by
 lang_setting; /* lang_setting == "de" */

Arden Syntax for Medical Logic Systems

Page 70 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

9.9 Arithmetic Operators

The behavior of time and duration data types is explained in Section 8.5.2.

9.9.1 + (binary, left-associative)

Binary + (addition) adds the left and right arguments. It can perform simple addition, add two durations, or

increment a time by a duration. Underflow or overflow results in null. Its usage is:

<n:number> := <n:number> + <n:number>

6 := 4 + 2;

() := 5 + ();

null := (1,2,3) + ();

() := null + ();

null := 5 + null;

(null, null, null) := (1, 2, 3) + null;

null := null + null;

<n:duration> := <n:duration> + <n:duration>

3 days := 1 day + 2 days;

<n:times> := <n:times> + <n:duration>

1990-03-15T00:00:00 := 1990-03-13T00:00:00 + 2 days;

1993-05-17T00:00:00 := 0000-00-00 + 1993 years + 5 months + 17 days;

<n:times> := <n:duration> + <n:times>

1990-03-15T00:00:00 := 2 days + 1990-03-13T00:00:00;

9.9.2 + (unary, non-associative)

Unary + has no effect on its argument if it is of a valid type. Its usage is:

<n:number> := + <n:number>

2 := + 2;

null := + "asdf";

<n:duration> := + <n:duration>

2 days := + 2 days;

9.9.3 - (binary, left-associative)

Binary - (subtraction) subtracts the right argument from the left. It can perform numeric subtraction,

subtract two durations, decrement a time by a duration, or find the duration between two times. Underflow

or overflow results in null. In writing expressions, care must be taken that the subtraction operator is not

confused with the "-" in time constant (Section 7.1.9). Any ambiguity is resolved in favor of time constants.

Its usage is:

<n:number> := <n:number> - <n:number>

4 := 6 - 2;

<n:duration> := <n:duration> - <n:duration>

1 day := 3 days - 2 days;

<n:times> := <n:times> - <n:duration>

1990-03-13T00:00:00 := 1990-03-15T00:00:00 - 2 days;

<n:duration> := <n:times> - <n:times>

2 days := 1990-03-15T00:00:00 - 1990-03-13T00:00:00;

9.9.4 - (unary, non-associative)

Unary - is used for arithmetic negation; this is how one makes negative number constants. Underflow or

overflow results in null. One cannot put two arithmetic operators together, so the following expression is

illegal: 3 + -4. Instead one must use one of these: 3 + (-4), 3 - 4, or -4 + 3. Its usage is:

<n:number> := - <n:number>

(-2) := - 2;

<n:duration> := - <n:duration>

(-2) days := - (2 days);

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 71

Revision date: 10/4/2023 Print date: 10/4/2023

9.9.5 * (binary, left-associative)

The * operator (multiplication) multiplies the left and right arguments. Underflow or overflow results in

null. It can perform numeric multiplication or multiply a duration by a number. Its usage is:

<n:number> := <n:number> * <n:number>

8 := 4 * 2;

<n:duration> := <n:number> * <n:duration>

6 days := 3 * 2 days;

<n:duration> := <n:duration> * <n:number>

6 days := 2 days * 3;

9.9.6 / (binary, left-associative)

The / operator (division) divides the left argument by the right one. It can perform numeric division, divide

a duration by a number, or find the ratio between two durations. Null results from division by zero,

underflow, or overflow. Duration unit conversion can be done with the / operator (e.g., / 1 year turns any

duration into years). Its usage is:

<n:number> := <n:number> / <n:number>

4 := 8 / 2;

<n:duration> := <n:duration> / <n:number>

2 days := 6 days / 3;

<n:number> := <n:duration> / <n:duration>

120 := 2 minutes / 1 second;

36 := 3 years / 1 month;

9.9.7 ** (binary, non-associative)

The ** operator (exponentiation) raises the left argument to the power of the right argument. Its usage is:

<n:number> := <n:number> ** <1:number>

9 := 3 ** 2;

9.10 Temporal Operators

The behavior of time and duration data types is explained in Section 8.5.2.

9.10.1 After (binary, non-associative)

The after operator is equivalent to addition between a duration and a time. Its usage is:

<n:times> := <n:duration> AFTER <n:times>

1990-03-15T00:00:00 := 2 days AFTER 1990-03-13T00:00:00;

9.10.2 Before (binary, non-associative)

The before operator is equivalent to the subtraction of a duration from a time. Its usage is:

<n:times> := <n:duration> BEFORE <n:times>

1990-03-11T00:00:00 := 2 days BEFORE 1990-03-13T00:00:00;

9.10.3 Ago (unary, non-associative)

The ago operator subtracts a duration from now, resulting in a time. Its usage is (assuming that now is

1990-04-19T00:03:15):

<n:time> := <n:duration> AGO

1990-04-17T00:03:15 := 2 days AGO;

Arden Syntax for Medical Logic Systems

Page 72 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

9.10.4 From (binary, non-associative)

The from operator is equivalent to addition between a duration and a time. Its usage is:

<n:times> := <n:duration> FROM <n:times>

2000-09-13T00:08:00 := 2 days FROM 2000-09-11T00:08:00;

9.10.5 Time of Day [of] (unary, right-associative)

The time of day operator extracts the time-of-day from a time. Primary times are lost.

Its usage is:

<n:time-of-day> := TIME OF DAY [OF] <n:time>

14:23:17.3 := TIME OF DAY OF 1990-01-03T14:23:17.3;

null := TIME OF DAY OF "this is not a time";

/* let time of data0 be 2006-01-01T12:00:00 */

12:00:00 := TIME OF DAY OF (TIME OF data0);

null := TIME OF (TIME OF DAY OF (TIME OF data0));

9.10.6 Day of Week [of] (unary, right-associative)

The day of week operator returns a positive integer from 1 to 7 that represents the day of the week of a

specified time (Section 8.12). The number 1 corresponds to Monday, 2 corresponds to Tuesday, etc. The

number 7 represents Sunday. This operator may be used with a user-defined list of strings to report an

actual weekday in an appropriate language, or may be used with the reserved words representing the days

of the week. The example below assumes that 2006-05-26 was a Friday, 2006-06-03 was a Sunday, 2006-

06-06 was a Tuesday, potassium is the result of a query with the primary times (2006-06-03T09:04:00,

2006-06-06T16:40:00), and the weekday of now is a Monday.

<n:number> := DAY OF WEEK [OF] <n:time>

5 := DAY OF WEEK OF 2006-05-26T13:20:00;

(6, 2) := DAY OF WEEK OF (TIME OF potassium);

1 := DAY OF WEEK OF now;

null := DAY OF WEEK 15:30:00;

true := DAY OF WEEK OF 2006-05-26T13:20:00 = FRIDAY;

(true, false) := DAY OF WEEK OF TIME OF potassium IS IN (SATURDAY,
SUNDAY);

false := DAY OF WEEK OF now IS IN (SATURDAY, SUNDAY);

A more detailed example:

weekend := DAY OF WEEK OF eventtime is in (SATURDAY, SUNDAY);

// weekend is true if the event occurred on Saturday or Sunday

weekday := ("Monday", "Tuesday", …, "Sunday");

last_k := last potassium;

last_k_time := time last_k;

msg := "The last potassium was collected on "
|| weekday[DAY OF WEEK OF last_k_time];

//"The last potassium was collected on Tuesday"

9.10.7 Extract Year (unary, right-associative)

The extract year operator extracts the year from a time. Its usage is:

<n:number> := EXTRACT YEAR <n:time>

1990 := EXTRACT YEAR 1990-01-03T14:23:17.3;

null := EXTRACT YEAR (1 YEAR);

null := EXTRACT YEAR 14:23:17.3;

9.10.8 Extract Month (unary, right-associative)

The extract month operator extracts the month from a time. Its usage is:

<n:number> := EXTRACT MONTH <n:time>

1 := EXTRACT MONTH 1990-01-03T14:23:17.3;

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 73

Revision date: 10/4/2023 Print date: 10/4/2023

null := EXTRACT MONTH 1;

null := EXTRACT MONTH 14:23:17.3;

9.10.9 Extract Day (unary, right-associative)

The extract day operator extracts the day from a time. Its usage is:

<n:number> := EXTRACT DAY <n:time>

3 := EXTRACT DAY 1990-01-03T14:23:17.3;

null := EXTRACT DAY "this is not a time";

null := EXTRACT DAY 14:23:17.3;

9.10.10 Extract Hour (unary, right-associative)

The extract hour operator extracts the hour from a time. Its usage is:

<n:number> := EXTRACT HOUR <n:times>

14 := EXTRACT HOUR 1990-01-03T14:23:17.3;

null := EXTRACT HOUR (1 HOUR);

14 := EXTRACT HOUR 14:23:17.3;

9.10.11 Extract Minute (unary, right-associative)

The extract minute operator extracts the minute from a time. Its usage is:

<n:number> := EXTRACT MINUTE <n:times>

23 := EXTRACT MINUTE 1990-01-03T14:23:17.3;

0 := EXTRACT MINUTE 1990-01-03;

null := EXTRACT MINUTE 0000-00-00;

23 := EXTRACT MINUTE 14:23:17.3;

9.10.12 Extract Second (unary, right-associative)

The extract second operator extracts the second from a time. Its usage is:

<n:number> := EXTRACT SECOND <n:times>

17.3 := EXTRACT SECOND 1990-01-03T14:23:17.3;

null := EXTRACT SECOND (1 second);

17.3 := EXTRACT SECOND 14:23:17.3;

9.10.13 Replace Year [of] … With (binary, right-associative)

The replace year of … with operator allows the replacement of the year part of a time. The result of the

replace year of … with operator preserves the primary time of the first argument. The numeric second

argument must evaluate to a positive integer greater than or equal to 1800, otherwise null is returned. Any

fractional part of the second argument will be removed before evaluation. For example:

<n:time> := REPLACE YEAR [OF] <n:time> WITH <n:number>

var1 := 1990-03-15T15:00:00;

2011-03-15T15:00:00 := REPLACE YEAR OF var1 WITH 2011;

(2011-03-15T15:00:00, 2010-03-15T15:00:00) := REPLACE YEAR OF var1 WITH
(2011, 2010);

null := REPLACE YEAR OF var1 WITH -10;

null := REPLACE YEAR OF var1 WITH "7";

var2 := 19:00:00;

null := REPLACE YEAR OF var2 WITH 2011;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2011-09-21T16:30:00, 2011-03-15T15:00:00) := REPLACE YEAR OF var3 WITH
2011;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(1999-09-21T16:30:00, 2000-03-15T15:00:00) := REPLACE YEAR OF var3 WITH
(1999, 2000);

null := REPLACE YEAR OF var3 WITH (1999, 2000, 2002);

Arden Syntax for Medical Logic Systems

Page 74 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

9.10.14 Replace Month [of] … With (binary, right-associative)

The replace month of … with operator allows the replacement of the month part of a time. The result of

the replace month of … with operator preserves the primary time of the first argument. The numeric

second argument must evaluate to a positive integer between 1 and 12, otherwise null is returned. Any

fractional part of the second argument will be removed before evaluation. For example:

<n:time> := REPLACE MONTH [OF] <n:time> WITH <n:number>

var1 := 1990-03-15T15:00:00;

1990-11-15T15:00:00 := REPLACE MONTH OF var1 WITH 11;

(1990-11-15T15:00:00, 1990-10-15T15:00:00) := REPLACE MONTH OF var1 WITH
(11, 10);

null := REPLACE MONTH OF var1 WITH 14;

null := REPLACE MONTH OF var1 WITH "7";

1990-07-15T15:00:00 := REPLACE MONTH OF var1 WITH 7.45;

var2 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-12-21T16:30:00, 2010-12-15T15:00:00) := REPLACE MONTH OF var2 WITH
12;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-06-21T16:30:00, 2010-07-15T15:00:00) := REPLACE MONTH OF var3 WITH
(6, 7);

null := REPLACE MONTH OF var3 WITH (3, 4, 7);

9.10.15 Replace Day [of] …With (binary, right-associative)

The replace day of … with operator allows the replacement of the day part of a time. The result of the

replace day of … with operator preserves the primary time of the first argument. The numeric second

argument must evaluate to a positive integer between 1 and the number of days in the existing month of the

first operator, otherwise, null is returned. Any fractional part of the second argument will be removed

before evaluation. For example:

<n:time> := REPLACE DAY [OF] <n:time> WITH <n:number>

var1 := 1990-03-15T15:00:00;

1990-03-11T15:00:00 := REPLACE DAY OF var1 WITH 11;

(1990-03-11T15:00:00, 1990-03-10T15:00:00) := REPLACE DAY OF var1 WITH
(11, 10);

null := REPLACE DAY OF var1 WITH 100;

null := REPLACE DAY OF var1 WITH "7";

1990-03-07T15:00:00 := REPLACE DAY OF var1 WITH 7.45;

null := REPLACE DAY OF 1990-02-11T15:00:00 WITH 30;

null := REPLACE DAY OF 1990-02-11T15:00:00 WITH 0.8;

1990-02-01T15:00:00:= REPLACE DAY OF 1990-02-15T15:00:00 WITH 1.8;

var2 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-07T16:30:00, 2010-03-07T15:00:00) := REPLACE DAY OF var2 WITH 7;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-12T16:30:00, 2010-03-23T15:00:00) := REPLACE DAY OF var3 WITH
(12, 23);

null := REPLACE DAY OF var3 WITH (12, 23, 24);

9.10.16 Replace Hour [of] … With (binary, right-associative)

The replace hour of … with operator allows the replacement of the hour part of a time or time-of-day. The

result of the replace hour of … with operator preserves the primary time of the first argument. The

numeric second argument must evaluate to a positive integer between 0 and 23, otherwise, null is returned.

Any fractional part of the second argument will be removed before evaluation. For example:

<n:times> := REPLACE HOUR [OF] <n:times> WITH <n:number>

var1 := 1990-03-15T15:00:00;

1990-03-15T11:00:00 := REPLACE HOUR OF var1 WITH 11;

(1990-03-15T11:00:00, 1990-03-15T10:00:00) := REPLACE HOUR OF var1 WITH
(11, 10);

null := REPLACE HOUR OF var1 WITH 100;

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 75

Revision date: 10/4/2023 Print date: 10/4/2023

null := REPLACE HOUR OF var1 WITH "7";

10:00 := REPLACE HOUR OF 18:00 WITH 10;

var2 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-21T20:30:00, 2010-03-15T20:00:00) := REPLACE HOUR OF var2 WITH
20;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-21T07:30:00, 2010-03-15T09:00:00) := REPLACE HOUR OF var3 WITH
(7, 9);

null := REPLACE HOUR OF var3 WITH (7, 9, 13);

9.10.17 Replace Minute [of] … With (binary, right-associative)

The replace minute of … with operator allows the redefinition of the minute part of a time or time-of-day.

The result of the replace minute of … with operator preserves the primary time of the first argument. The

numeric second argument must evaluate to a positive integer between 0 and 59, otherwise, null is returned.

Any fractional part of the second argument will be removed before evaluation. For example:

<n:times> := REPLACE MINUTE [OF] <n:times> WITH <n:number>

var1 := 1990-03-15T15:00:00;

1990-03-15T15:11:00 := REPLACE MINUTE OF var1 WITH 11;

(1990-03-15T15:11:00, 1990-03-15T15:10:00) := REPLACE MINUTE OF var1 WITH
(11, 10);

null := REPLACE MINUTE OF var1 WITH 100;

null := REPLACE MINUTE OF var1 WITH "7";

18:10 := REPLACE MINUTE OF 18:00 WITH 10;

var2 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-21T16:15:00, 2010-03-15T15:15:00) := REPLACE MINUTE OF var2 WITH
15;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-21T16:25:00, 2010-03-15T15:23:00) := REPLACE MINUTE OF var3 WITH
(25, 23);

null := REPLACE MINUTE OF var3 WITH (25, 23, 7);

9.10.18 Replace Second [of] … With (binary, right-associative)

The replace second of … with operator allows the redefinition of the second part of a time or time-of-day.

The result of the replace second of … with operator preserves the primary time of the first argument. The

numeric second argument must be a positive number greater than or equal to 0 and strictly lower than 60,

otherwise, null is returned. Fractional replacement parameters are allowed for the replace second of …

with operator. For example:

<n:times> := REPLACE SECOND [OF] <n:times> WITH <n:number>

var1 := 1990-03-15T15:00:00;

1990-03-15T15:00:11 := REPLACE SECOND OF var1 WITH 11;

(1990-03-15T15:00:11, 1990-03-15T15:00:10) := REPLACE SECOND OF var1 WITH
(11, 10);

null := REPLACE SECOND OF var1 WITH -100;

null := REPLACE SECOND OF var1 WITH "7";

18:00:10 := REPLACE SECOND OF 18:00 WITH 10;

var2 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-21T16:30:33, 2010-03-15T15:00:33) := REPLACE SECOND OF var2 WITH
33;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-21T16:30:23, 2010-03-15T15:00:42) := REPLACE SECOND OF var3 WITH
(23, 42);

null := REPLACE SECOND OF var3 WITH (23, 42, 55);

9.11 Duration Operators

The behavior of the duration data type is explained in Section 8.5.2. Because the precedence of the

temporal operators is lower than that of the duration operators, 3 hours before 3 days ago is parsed as (3

Arden Syntax for Medical Logic Systems

Page 76 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

hours) before ((3 days) ago), and it would return what time it was three days and three hours before the

current time.

9.11.1 Year (unary, non-associative)

The year operator has one synonym: years. It creates a months duration from a number: one year is 12

months. Its usage is:

<n:duration> := <n:number> YEAR

24 months := 2 YEAR;

9.11.2 Month (unary, non-associative)

The month operator has one synonym: months. It creates a months duration from a number. Its usage is:

<n:duration> := <n:number> MONTH

9.11.3 Week (unary, non-associative)

The week operator has one synonym: weeks. It creates a seconds duration from a number: one week is

604800 seconds. Its usage is:

<n:duration> := <n:number> WEEK

9.11.4 Day (unary, non-associative)

The day operator has one synonym: days. It creates a seconds duration from a number: one day is 86400

seconds. Its usage is:

<n:duration> := <n:number> DAY

9.11.5 Hour (unary, non-associative)

The hour operator has one synonym: hours. It creates a seconds duration from a number: one hour is 3600

seconds. Its usage is:

<n:duration> := <n:number> HOUR

9.11.6 Minute (unary, non-associative)

The minute operator has one synonym: minutes. It creates a seconds duration from a number: one minute

is 60 seconds. Its usage is:

<n:duration> := <n:number> MINUTE

9.11.7 Second (unary, non-associative)

The second operator has one synonym: seconds. It creates a seconds duration from a number. Its usage is:

<n:duration> := <n:number> SECOND

9.12 Aggregation Operators

9.12.1 General Properties

The aggregation operators do not follow the default list handling, or the default primary time handling.

They perform aggregation on a list. That is, they take a list as an argument (they are all unary) and return a

single item as a result. Unless otherwise noted, if all the elements of the list have the same primary time,

the result maintains that primary time (otherwise the primary time is lost). An argument that is a single item

is treated as a list of length one.

Each of the operators may be followed by the word of. Parentheses are not required. For example, these are

all the same:

SUM a_list

SUM OF a_list

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 77

Revision date: 10/4/2023 Print date: 10/4/2023

SUM(a_list)

SUM OF(a_list)

Multiple aggregation and transformation operators (for example, see Section 9.14) may be placed in an

expression without parentheses; for example:

AVERAGE OF LAST 3 FROM a_list

9.12.2 Count (unary, right-associative)

The count operator returns the number of items (including null items) in a list. Count never returns null.

The result loses the primary time. Its usage is:

<1:number> := COUNT <n:any-type>

4 := COUNT (12, 13, 14, null)

1 := COUNT "asdf"

0 := COUNT ()

1 := COUNT null

9.12.3 Exist (unary, right-associative)

The exist operator has one synonym: exists. It returns true if there is at least one non-null item in a list of

any type. If the list argument is a single item, then it is treated as a list of length one. Exist never returns

null. If all the elements of the list have the same primary time, the result maintains that primary time

(otherwise the primary time is lost). Its usage is:

<1:Boolean> := EXIST <n:any-type>

true := EXIST (12, 13, 14);

false := EXIST null;

false := EXIST ();

true := EXIST ("plugh", null);

9.12.4 Average (unary, right-associative)

The average operator has one synonym: avg. It calculates the average of a number, time, or duration list. If

all the elements of the list have the same primary time, the result maintains that primary time (otherwise the

primary time is lost). Its usage is:

<1:number> := AVERAGE <n:number>

14 := AVERAGE (12, 13, 17);

3 := AVERAGE 3;

null := AVERAGE ();

<1:time> := AVERAGE <n:times>

1990-03-11T03:10:00 := AVERAGE (1990-03-10T03:10:00, 1990-03-12T03:10:00);

null := AVERAGE (03:10:00, 1990-03-12T03:10:00);

04:10:00 := AVERAGE (03:10:00, 05:10:00);

<1:duration> := AVERAGE <n:duration>

3 days := AVERAGE (2 days, 3 days, 4 days);

9.12.5 Median (unary, right-associative)

The median operator calculates the median value of a number, time, or duration list. The list is first sorted.

If there is an odd number of items, it selects the middle value. If there is an even number of items, it

averages the middle two values. If there is a tie, then it selects the latest of those elements that have a

primary time. If a single element is selected or if the two selected elements of the list have the same

primary time, the result maintains that primary time (otherwise the primary time is lost). Its usage is:

<1:number> := MEDIAN <n:number>

13 := MEDIAN (12, 17, 13);

3 := MEDIAN 3;

null := MEDIAN ();

<1:times> := MEDIAN <n:times>

Arden Syntax for Medical Logic Systems

Page 78 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

1990-03-11T03:10:00 := MEDIAN (1990-03-10T03:10:00, 1990-03-11T03:10:00,
1990-03-28T03:10:00);

03:10:00 := MEDIAN (03:10:00, 02:10:00, 23:10:00);

<1:duration> := MEDIAN <n:duration>

3 days := MEDIAN (1 hour, 3 days, 4 years);

9.12.6 Sum (unary, right-associative)

The sum operator calculates the sum of a number or duration list. If all the elements of the list have the

same primary time, the result maintains that primary time (otherwise the primary time is lost). Its usage is:

<1:number> := SUM <n:number>

39 := SUM (12, 13, 14);

3 := SUM 3;

0 := SUM ();

<1:duration> := SUM <n:duration>

7 days := SUM (1 day, 6 days);

9.12.7 Stddev (unary, right-associative)

The stddev operator returns the sample standard deviation of a numeric list. If all the elements of the list

have the same primary time, the result maintains that primary time (otherwise the primary time is lost). Its

usage is:

<1:number> := STDDEV <n:number>

1.58113883 := STDDEV (12, 13, 14, 15, 16);

null := STDDEV 3;

null := STDDEV ();

9.12.8 Variance (unary, right-associative)

The variance operator returns the sample variance of a numeric list. If all the elements of the list have the

same primary time, the result maintains that primary time (otherwise the primary time is lost). Its usage is:

<1:number> := VARIANCE <n:number>

2.5 := VARIANCE (12, 13, 14, 15, 16);

null := VARIANCE 3;

null := VARIANCE ();

9.12.9 Minimum (unary, right-associative)

The minimum operator has one synonym: min. It returns the smallest value in a homogeneous list of an

ordered type (that is, all numbers, all times, all durations, or all strings), using the <= operator (see Section

9.5.4). If there is a tie, it selects the element with the latest primary time. The primary time of the selected

argument is maintained. Its usage is:

<1:ordered> := MINIMUM <n:ordered>

12 := MINIMUM (12, 13, 14);

3 := MIN 3;

null := MINIMUM ();

null := MINIMUM (1, "abc");

The minimum operator can also be extended by the using modifier as defined for the sort operator (see

9.2.4) to allow more complex calculations of the minimum. For example:

<1:object> := minimum <n:object> using it.age; // will return the youngest

 // person from a list of persons (represented by objects)

180 := minimum (0, 30, 90, 180, 200, 300) using cosine of it;

9.12.10 Maximum (unary, right-associative)

The maximum operator has one synonym: max. It returns the largest value in a homogeneous list of an

ordered type, using the >= operator (see Section 9.5.6). If there is a tie, it selects the element with the latest

primary time. The primary time of the selected argument is maintained. Its usage is:

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 79

Revision date: 10/4/2023 Print date: 10/4/2023

<1:ordered> := MAXIMUM <n:ordered>

14 := MAXIMUM (12, 13, 14);

3 := MAXIMUM 3;

null := MAXIMUM ();

null := MAXIMUM (1,"abc");

The maximum operator can also be extended by the using modifier as defined for the sort operator (see

9.2.4) to allow more complex calculations of the maximum. For example:

<1:object> := maximum <n:object> using it.age; // will return the oldest

 // person from a list of persons (represented by objects)

90 := maximum (0, 30, 90, 180, 200, 300) using sinus of it;

9.12.11 Last (unary, right-associative)

The last operator returns the value at the end of a list, regardless of type. If the list is empty, null is

returned. The expression last x is equivalent to x[count x]. Last on the result of a time-sorted query will

return the most recent value. The primary time of the selected argument is maintained. Note that last is

different than last specified in Arden Syntax version E 1460-92. That operator is now called latest (see

Section 9.12.16). Its usage is:

<1:any-type> := LAST <n:any-type>

14 := LAST (12, 13, 14);

3 := LAST 3;

null := LAST ();

9.12.12 First (unary, right-associative)

The first operator returns the value at the beginning of a list. If the list is empty, null is returned. The

expression first x is equivalent to x[1]. First on the result of a time-sorted query will return the

earliest value. The primary time of the selected argument is maintained. Note that first is different than

first specified in Arden Syntax version E 1460-92. That operator is now called earliest (see Section

9.12.17). Its usage is:

<1:any-type> := FIRST <n:any-type>

12 := FIRST (12, 13, 14);

3 := FIRST 3;

null := FIRST ();

9.12.13 Any [IsTrue] (unary, right-associative)

The any operator returns true if any of the items in a list is true. It returns false if they are all false.

Otherwise it returns null. The special case of a list with zero members, results in false. If all the elements of

the list have the same primary time, the result maintains that primary time (otherwise the primary time is

lost). The optional keyword “IsTrue” can be used to increase the readability of statements using the any

operator. Its usage is:

<1:Boolean> := ANY [ISTRUE] <n:any-type>

true := ANY IsTrue (true, false, false);

false := ANY false;

false := ANY ();

null := ANY (3, 5, "red");

false := ANY (false, false);

null := ANY (false, null);

9.12.14 All [AreTrue] (unary, right-associative)

The all operator returns true if all of the items in a list are true. It returns false if any of the items is false.

Otherwise it returns null. The special case of a list with zero members, results in true. If all the elements of

the list have the same primary time, the result maintains that primary time (otherwise the primary time is

lost). The optional keyword “AreTrue” can be used to increase the readability of statements using the all

operator. Its usage is:

Arden Syntax for Medical Logic Systems

Page 80 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<1:Boolean> := ALL [ARETRUE] <n:any-type>

false := ALL AreTrue (true, false, false);

false := ALL false;

true := ALL ();

null := ALL (3, 5, "red");

null := ALL (true, null);

9.12.15 No [IsTrue] (unary, right-associative)

The no operator returns true if all of the items in a list are false. It returns false if any of the items is true.

Otherwise it returns null. The special case of a list with zero members, results in true. If all the elements of

the list have the same primary time, the result maintains that primary time (otherwise the primary time is

lost). The optional keyword “IsTrue” can be used to increase the readability of statements using the no

operator. Its usage is:

<1:Boolean> := NO [ISTRUE] <n:any-type>

false := NO IsTrue (true, false, false);

true := NO false;

true := NO ();

null := NO (3, 5, "red");

null := NO (false, null);

9.12.16 Latest (unary, right-associative)

The latest operator returns the value with the latest primary time in a list. If any of the elements do not

have primary times, the result is null (the argument can always be qualified by where time of it is present,

if this is not desired behavior). If the list is empty, null is returned. If more than one element has the latest

primary time, the first (with the lowest index) of these elements will be returned. The primary time of the

selected argument is maintained. Its usage is:

<1:any-type> := LATEST <n:any-type>

null := LATEST ();

"penicillin" := LATEST ("penicillin", "ibuprofen", "pseudoephedrine HCL");

(T16:40) (T16:40) (T14:05) (T14:04)

The latest operator can also be extended by the using modifier as defined for the sort operator (see 9.2.4) to

allow more complex calculations of the latest value. For example:

<1:object> := latest <n:object> using it.birthday; //will return the youngest

 // person from a list of persons (represented by objects)

9.12.17 Earliest (unary, right-associative)

The earliest operator returns the value with the earliest primary time in a list. If any of the elements do not

have primary times, the result is null (the argument can always be qualified by where time of it is present,

if this is not desired behavior). If more than one element has the earliest primary time, the first (with the

lowest index) of these elements will be returned. If the list is empty, null is returned. The primary time of

the argument is maintained. Its usage is:

<1:any-type> := EARLIEST <n:any-type>

null := EARLIEST ();

"pseudoephedrine HCL" := EARLIEST ("penicillin", "ibuprofen", "pseudoephedrine HCL");

(T14:04) (T16:40) (T14:05) (T14:04)

The earliest operator can also be extended by the using modifier as defined for the sort operator (see 9.2.4)

to allow more complex calculations of the earliest value. For example:

<1:object> := earliest <n:object> using it.birthday; //will return the

 // youngest person from a list of persons (represented by objects)

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 81

Revision date: 10/4/2023 Print date: 10/4/2023

9.12.18 Element (binary)

The element ([]) operator is used to select one or more elements from a list, based on ordinal position

starting at 1 for the first element. The arguments to “index” are a list expression (to the left of the []) and

a list of integers (inside the[]). The element operator maintains the primary times of the selected

arguments. Its usage is:

<n:any-type> := <k:any-type>[n:index]

20 := (10, 20, 30, 40)[2];

() := (10, 20)[()];

(null, 20) := (10, 20)[1.5, 2];

(10, 30, 50) := (10, 20, 30, 40, 50)[1, 3, 5];

(10, 30, 50) := (10, 20, 30, 40, 50)[1, (3, 5)];

(10, 20, 30) := (10, 20, 30, 40, 50)[1 seqto 3];

9.12.19 Extract Characters ... (unary, right-associative)

The extract characters operator expects a string as its argument. It returns a list of the single characters in

the string. If the argument has more than one element, the elements are first concatenated, as for the ||

operator (see Section 9.8.1). If the argument is an empty list, the result is the empty list (). The string

operator (Section 9.8.3) can be used to put the list back together; and the index operator (Section 9.12.18)

can be used to select certain items from the list. The primary times of its arguments are lost. Its usage is:

<n:string> := EXTRACT CHARACTERS <m:string>

("a", "b", "c") := EXTRACT CHARACTERS "abc";

("a", "b", "c") := EXTRACT CHARACTERS ("ab", "c");

() := EXTRACT CHARACTERS ();

() := EXTRACT CHARACTERS "";

"edcba" := STRING REVERSE EXTRACT CHARACTERS "abcde";

9.12.20 Seqto (binary, non-associative)

The seqto operator generates a list of integers in ascending order. Both arguments must be single integers;

otherwise null is returned. If the first argument is greater than the second argument, the result is the empty

list. The primary times are lost. Its usage is:

<n:number> := <1:number> SEQTO <1:number>

(2, 3, 4) := 2 SEQTO 4;

() := 4 SEQTO 2;

null := 4.5 SEQTO 2;

(2) := 2 SEQTO 2;

(-3, -2, -1) := (-3) SEQTO (-1);

(2, 4, 6, 8) := 2 * (1 SEQTO 4);

null := (1.5 seqto 5);

9.12.21 Reverse (unary, right-associative)

The reverse operator generates a new list with the elements in the reverse order. The primary times of its

arguments are maintained. Its usage is:

<n:any-type> := REVERSE <n:any-type>

(3, 2, 1) := reverse (1, 2, 3);

(6, 5, 4, 3, 2, 1) := reverse (1 seqto 6);

() := reverse ();

9.12.22 Index Extraction Aggregation Operators

These operators behave similarly to their non-index extracting counterparts with the exception that they

return the value of the index of the element that matches the specified criteria rather than the value of the

element. These operators do not maintain primary times.

Arden Syntax for Medical Logic Systems

Page 82 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

9.12.22.1 Index Latest (unary, right-associative)

The index latest operator returns the index of the element with the latest primary time in a list. If any of the

elements do not have primary times, the result is null (the argument can always be qualified by where time

of it is present, if this is not desired behavior). If the list is empty, null is returned. The primary time of the

selected argument is maintained. Its usage is:

<1:any-type> := INDEX LATEST <n:any-type>

null := INDEX LATEST ();

1 := INDEX LATEST ("penicillin", "ibuprofen", "pseudophedrine HCL");

 (T16:40) (T14:05) (T14:04)

9.12.22.2 Index Earliest (unary, right-associative)

The index earliest operator returns the index of the element with the earliest primary time in a list. If any

of the elements do not have primary times, the result is null (the argument can always be qualified by

where time of it is present, if this is not desired behavior). If the list is empty, null is returned. The

primary time of the argument is maintained. Its usage is:

<1:any-type> := INDEX EARLIEST <n:any-type>

null := INDEX EARLIEST ()

3 := INDEX EARLIEST ("penicillin", "ibuprofen", "pseudophedrine HCL");

 (T16:40) (T14:05) (T14:04)

9.12.22.3 Index Minimum (unary, right-associative)

The index minimum operator has one synonym: index min. It returns the index of the element with the

smallest value in a homogeneous list of an ordered type (that is, all numbers, all times, all durations, or all

strings), using the <= operator (see Section 9.5.4). If there is a tie, it selects the element with the latest

primary time. Its usage is:

<1:ordered> := INDEX MINIMUM <n:ordered>

1 := INDEX MINIMUM (12, 13, 14);

1 := INDEX MIN 3;

null := INDEX MINIMUM ();

null := INDEX MINIMUM (1, "abc");

9.12.22.4 Index Maximum (unary, right-associative)

The index maximum operator has one synonym: index max. It returns the largest value in a homogeneous

list of an ordered type, using the >= operator (see Section 9.5.6). If there is a tie, it selects the element with

the latest primary time. The primary time of the selected argument is maintained. Its usage is:

<1:ordered> := INDEX MAXIMUM <n:ordered>

3 := INDEX MAXIMUM (12, 13, 14);

1 := INDEX MAX 3;

null := INDEX MAXIMUM ();

null := INDEX MAXIMUM (1, "abc");

9.12.22.5 Absence of Other Index Operators

There are no index extraction equivalents for last and first as index first would always return 1 and index

last is equivalent to the count operator.

9.13 Query Aggregation Operators

9.13.1 General Properties

The query aggregation operators do not follow the default list handling, or the default primary time

handling. They perform aggregation on a list. That is, they take a list as one argument and return a single

item as a result. If the list argument is a single item, then it is treated as a list of length one. Unless

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 83

Revision date: 10/4/2023 Print date: 10/4/2023

otherwise specified, if all the elements of the list have the same primary time, the result maintains that

primary time (otherwise the primary time lost).

The unary query aggregation operators (that is, those that do not include the from word) may optionally be

followed by of.

The query aggregation operators follow the default time-of-day handling, when used with a time-of-day

argument. The time-of-day value is a point in time within the current day.

9.13.2 Nearest ... From (binary, right-associative)

The nearest ... from operator expects a time as its first argument and a list as its second argument. It selects

the item from the list whose time of occurrence is nearest the specified time. If any of the elements do not

have primary times, the result is null (the argument can always be qualified by where time of it is present,

if this is not desired behavior). In the case of a tie, the element with the smallest index is used. The primary

times of the argument are maintained. Assume that data is a list that is the result of a query with these

values: 12, 13, 14; data has these primary times:1990-03-15T15:00:00, 1990-03-16T15:00:00, 1990-03-

17T15:00:00; and now is 1990-03-18T16:00:00. The usage of the nearest ... from operator is:

<n:any-type> := NEAREST <1:times> FROM <m:any-type>

13 := NEAREST (2 days ago) FROM data;

null := NEAREST (2 days ago) FROM (3, 4);

null := NEAREST (2 days ago) FROM ();

14 := NEAREST 12:00 FROM data;

// the same as NEAREST 1990-03-18T12:00:00

14 := NEAREST 23:00 FROM data;

// the same as NEAREST 1990-03-18T23:00:00

A more detailed example: a blood glucose query result contains following values 7.0, 10.0, 12.0,

query_result has the primary times 1990-03-18T12:00:00, 1990-03-18T12:30:00, 1990-03-18T13:00:00,

and now is 1990-03-18T16:00:00.

The blood glucose level before lunch can be retrieved with:

7.0 := NEAREST 12:00 FROM query_result;

The blood glucose level after ½ hour is:

12.0 := NEAREST 12:30 FROM query_result;

9.13.3 Index Nearest ... From (binary, right-associative)

The index nearest ... from operator functions exactly as the nearest … from operator (Section 9.13.2),

except that it returns the index of the element rather than the element itself. Index nearest … from does

not maintain primary time. Assume that data is a list that is the result of a query with these values: 12, 13,

14; data has these primary times:1990-03-15T15:00:00, 1990-03-16T15:00:00, 1990-03-17T15:00:00; and

now is 1990-03-18T16:00:00. The usage of the index nearest ... from operator is:

<n:number> := INDEX NEAREST <n:time> FROM <m:any-type>

2 := INDEX NEAREST (2 days ago) FROM data;

null := INDEX NEAREST (2 days ago) FROM (3, 4);

9.13.4 Index Of … From … (binary, right-associative)

The index of ... from operator expects an arbitrary data value as its first argument and a list as its second

argument. It returns a list containing the indices of the occurrences of the given data value within the

provided list. If there is more than one occurrence all occurrences are returned. The result is null if no such

value is found in the list or in case of invalid parameters. The primary times of the arguments are not

maintained. The usage of the index of ... from operator is:

Arden Syntax for Medical Logic Systems

Page 84 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<n:number> := INDEX OF <1:any-type> FROM <m:any-type>

(4) := INDEX OF 4 FROM (1, 2, 3, 4, "5", "six", 7);

(5) := INDEX OF "5" FROM (1, 2, 3, 4, "5", "six", 7);

 null := INDEX OF 5 FROM (1, 2, 3, 4, "5", "six", 7);

 null := INDEX OF null FROM (1, 2, 3, 4, "5", "six", 7);

 null := INDEX OF 5 FROM null;

(1) := INDEX OF null FROM null;

(1) := INDEX OF 5 FROM 5;

(1, 3, 5) := INDEX OF 1 FROM (1, 2, 1, 4, 1, "six", 7);

(3, 5) := INDEX OF null FROM (1, 2, null, 4, null, "six", 7);

9.13.5 At Least ... [IsTrue|AreTrue] From … (binary, right-associative)

The at least ... from operator expects a number (call it N) as its first argument and a homogeneous list of

truth values or Boolean as its second argument. The at least … from operator returns the nth largest value

of the list of truth values or Boolean. If the first argument is not a number or the second parameter contains

a non-truth value or non-Boolean, null is returned. If N is greater than the cardinality of the list, false is

returned. The primary times of the arguments are not maintained. The optional keywords “IsTrue” and

“AreTrue” can be used to increase the readability of statements using the at least … from operator. The

usage of the operator is:

<1:Boolean> := AT LEAST <1:number> [ISTRUE|ARETRUE] FROM <n:Boolean>

true := AT LEAST 1 IsTrue FROM (TRUE, TRUE, FALSE, FALSE);

true := AT LEAST 2 AreTrue FROM (TRUE, TRUE, TRUE, FALSE);

false := AT LEAST 2 FROM (TRUE, FALSE, FALSE, FALSE);

false := AT LEAST 7 AreTrue FROM (TRUE, FALSE, FALSE);

null := AT LEAST 2 YEARS FROM (TRUE, FALSE, FALSE);

null := AT LEAST 2 FROM (TRUE, "true", FALSE);

<1:truth-value> := AT LEAST <1:number> [ISTRUE|ARETRUE] OF <n:truth-value>

truth value 0.7 := AT LEAST 2 OF (TRUE, truth value 0.7, truth value 0.1,
FALSE);

truth value 1 := APPLICABILITY OF (AT LEAST 2 OF (TRUE, truth value 0.7,
FALSE));

false := AT LEAST 7 OF (TRUE, truth value 0.1,FALSE);

null := AT LEAST 2 YEARS OF (TRUE, truth value 0.1,FALSE);

null := AT LEAST 2 OF (TRUE, "true", truth value 0.1,FALSE);

truth value 1 := APPLICABILITY OF (AT LEAST 2 OF (TRUE, "true", truth
value 0.1,FALSE));

9.13.6 At Most ... [IsTrue|AreTrue] From … (binary, right-associative)

The at most ... from operator expects a number (call it N) as its first argument and a homogeneous list of

truth values or Boolean as its second argument. The at most … from operator returns the nth smallest value

of the list of truth values or Boolean. If the first argument is not a number or the second parameter contains

a non-truth value or non-Boolean, null is returned. If N is greater than the cardinality of the list, false is

returned. The primary times of the arguments are not maintained. The optional keywords “IsTrue” and

“AreTrue” can be used to increase the readability of statements using the at most … from operator. The

usage of the operator is:

<1:Boolean> := AT MOST <1:number> [ISTRUE|ARETRUE] FROM <n:Boolean>

true := AT MOST 2 AreTrue FROM (TRUE, TRUE, FALSE, FALSE);

false := AT MOST 1 IsTrue FROM (TRUE, TRUE, TRUE, FALSE);

true := AT MOST 2 FROM (TRUE, FALSE, FALSE, FALSE);

false := AT MOST 7 FROM (TRUE, FALSE, FALSE);

null := AT MOST 2 YEARS FROM (TRUE, FALSE, FALSE);

null := AT MOST 2 FROM (TRUE, "true", FALSE);

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 85

Revision date: 10/4/2023 Print date: 10/4/2023

<1:truth-value> := AT MOST <1:number> [ISTRUE|ARETRUE] OF <n:truth-value>

truth value 0.4 := AT MOST 2 OF (TRUE, truth value 0.4, truth value 0.7,
FALSE);

truth value 1 := APPLICABILITY OF (AT MOST 2 OF (TRUE, truth value 0.5,
truth value 0.7, truth value 0.1, FALSE));

false := AT MOST 7 OF (TRUE, truth value 0.5, FALSE);

null := AT MOST 2 YEARS OF (TRUE, 0.5, 0.7, 0.1, FALSE);

null := AT MOST 2 OF (TRUE, "true", 0.7, 0.1, FALSE);

truth value 1 := APPLICABILITY OF (AT MOST 2 OF (TRUE, "true", 0.7, 0.1,
FALSE));

9.13.7 Slope (unary, right-associative)

The slope operator performs a regression and returns the slope for the result of a query assuming the y axis

contains the values and the x axis contains the times. The result is expressed as units per day but is

considered to be a number. Null results if the argument has fewer than two items. If all the elements of the

list have the same primary time, the result is null. If one or more of the primary times is non-existent, the

result is null. The result of the slope operator does not have a primary time. Its usage is (assuming the same

data as above):

<1:number> := SLOPE <n:number>

1 := SLOPE data;

null := SLOPE (3, 4);

9.14 Transformation Operators

9.14.1 General Properties

The transformation operators do not follow the default list handling, or the default primary time handling.

They transform a list, producing another list. If the list argument is a single item, then it is treated as a list

of length one. The result is always a list even if there is only one item (except if there is an error, in which

case the result is null).

Operators that are unary (that is, that do not include the from word) may optionally be followed by of.

9.14.2 Minimum ... From (binary, right-associative)

The minimum ... from operator has one synonym: min ... from. It expects a number (call it N) as its first

argument and a homogeneous list of an ordered type as its second argument. It returns a list with the N

smallest items from the argument list, in the same order that they are in the second argument, and with any

duplicates preserved. The result is null if N is not a non-negative integer. If there are not enough items in

the argument list, then as many as possible are returned. If there is a tie, then it selects the latest of those

elements that have a primary time. The primary times of the argument are maintained. Its usage is:

<n:ordered> := MINIMUM <1:number> FROM <m:ordered>

(11, 12) := MINIMUM 2 FROM (11, 14, 13, 12);

(3) := MINIMUM 2 FROM 3;

null := MINIMUM 2 FROM (3, "asdf");

() := MINIMUM 2 FROM ();

() := MINIMUM 0 FROM (2, 3);

(1, 2, 2) := MINIMUM 3 FROM (3, 5, 1, 2, 4, 2);

The minimum … from operator can also be extended by the using modifier as defined for the sort operator

(see 9.2.4) to allow more complex calculations of the minimum. For example:

<n:object> := minimum 2 from <n:object> using it.age; //will return the two

 // youngest persons from a list of persons (represented by objects)

9.14.3 Maximum ... From (binary, right-associative)

The maximum ... from operator has one synonym: max ... from. It expects a number (call it N) as its first

argument and a homogeneous list of an ordered type as its second argument. It returns a list with the N

Arden Syntax for Medical Logic Systems

Page 86 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

largest items from the argument list, in the same order that they are in the second argument, and with any

duplicates preserved. The result is null if N is not a non-negative integer. If there are not enough items in

the argument list, then as many as possible are returned. If there is a tie, then it selects the latest of those

elements that have a primary time. The primary times of the argument are maintained. Its usage is:

<n:ordered> := MAXIMUM <1:number> FROM <m:ordered>

(14, 13) := MAXIMUM 2 FROM (11, 14, 13, 12);

(3) := MAXIMUM 2 FROM 3;

null := MAXIMUM 2 FROM (3, "asdf");

() := MAXIMUM 2 FROM ();

() := MAXIMUM 0 FROM (1, 2, 3);

(5, 4, 4) := MAXIMUM 3 FROM (1, 5, 2, 4, 1, 4);

The maximum … from operator can also be extended by the using modifier as defined for the sort

operator (see 9.2.4) to allow more complex calculations of the maximum. For example:

<n:object> := maximum 2 from <n:object> using it.age; //will return the two

 // oldest persons from a list of persons (represented by objects)

9.14.4 First ... From (binary, right-associative)

The first ... from operator expects a number (call it N) as its first argument and a list as its second

argument. It returns a list with the first N items from the argument list. The result is null if N is not a non-

negative integer. If the list is the result of a time-sorted query, then the returned items are the earliest in

time. If there are not enough items in the argument list, then as many as possible are returned. This means

that first 1 from x differs from first x if x is empty; the former returns () and the latter returns null. The

primary times of the argument are maintained. Its usage is:

<n:any-type> := FIRST <1:number> FROM <m:any-type>

(11, 14) := FIRST 2 FROM (11, 14, 13, 12);

(3) := FIRST 2 FROM 3;

(null, 1) := FIRST 2 FROM (null, 1, 2, null);

() := FIRST 2 FROM ();

9.14.5 Last ... From (binary, right-associative)

The last ... from operator expects a number (call it N) as its first argument and a list as its second argument.

It returns a list with the last N items from the argument list. The result is null if N is not a non-negative

integer. If the list is the result of a time-sorted query, then the returned items are the latest in time. If there

are not enough items in the argument list, then as many as possible are returned. This means that last 1

from x differs from last x if x is empty; the former returns () and the latter returns null. The primary times

of the argument are maintained. Its usage is:

<n:any-type> := LAST <1:number> FROM <m:any-type>

(13, 12) := LAST 2 FROM (11, 14, 13, 12);

(3) := LAST 2 FROM 3;

(2, null) := LAST 2 FROM (null, 1, 2, null);

() := LAST 2 FROM ();

9.14.6 Sublist …Elements [Starting at …] From … (ternary, right-associative)

The sublist … elements [starting at …] from operator returns a sublist of elements from a designated

target list and is similar to the substring operator (see 9.8.10). This sublist consists of the specified number

of elements from the source list beginning with the starting position (either the first elements of the list or

the specified location within the list). For example sublist 3 elements starting at 2 from (“E”, “x”, “a”,

“m”, “p”, “l”, “e”) would return (“x”, “a”, “m”)–a 3 element list beginning with the second element in

the source list.

The target list must be a list data type, the starting location within the list must be a positive integer, and the

number of elements to be returned must be an integer, or the operator returns null. If target is not a list data

type, a list with one element is assumed. If a starting position is specified, its value must be an integer

between 1 and the length of the list, otherwise an empty list is returned. If the requested number of

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 87

Revision date: 10/4/2023 Print date: 10/4/2023

elements is greater than the length of the list, the entire list is returned. If a starting point is specified, and

the requested number of elements is greater than the size of the list minus the starting point, the resulting

list is the original list to the right of and including the starting position. If the number of elements requested

is positive the elements are counted from left to right. If the number of elements requested is negative, the

elements are counted from right to left. The elements in a sublist are always returned in the order that they

appear in the original list. Default list handling is observed. Primary times are preserved.

<n:any-type> := SUBLIST <1:number> ELEMENTS [STARTING AT <1:number>] FROM
<m:any-type>

(1, 2) := SUBLIST 2 ELEMENTS FROM (1, 2, 3, 4, 5);

(1, 2, 3, 4, 5) := SUBLIST 100 ELEMENTS FROM (1, 2, 3, 4, 5);

(4, 5, 6) := SUBLIST 3 ELEMENTS STARTING AT 4 FROM (1, 2, 3, 4, 5, 6, 7);

(4, 5, 6, 7) := SUBLIST 20 ELEMENTS STARTING AT 4 FROM (1, 2, 3, 4, 5, 6,
7);

null := SUBLIST 2.3 ELEMENTS FROM (1, 2, 3, 4, 5, 6, 7);

null := SUBLIST 2 ELEMENTS STARTING AT 4.7 FROM (1, 2, 3, 4, 5, 6, 7);

null := SUBLIST 3 ELEMENTS STARTING AT "c" FROM (1, 2, 3, 4, 5, 6, 7);

null := SUBLIST "b" ELEMENTS STARTING AT 4 FROM (1, 2, 3, 4, 5, 6, 7);

() := SUBLIST 3 ELEMENTS STARTING AT 4 FROM 281471;

(4) := SUBLIST 1 ELEMENTS STARTING AT 4 FROM (1, 2, 3, 4, 5, 6, 7);

(4) := SUBLIST –1 ELEMENTS STARTING AT 4 FROM (1, 2, 3, 4, 5, 6, 7);

(2, 3, 4) := SUBLIST –3 ELEMENTS STARTING AT 4 FROM (1, 2, 3, 4, 5, 6, 7);

(1) := SUBLIST 1 ELEMENTS FROM (1, 2, 3, 4, 5, 6, 7);

9.14.7 Increase (unary, right-associative)

The increase operator returns a list of the differences between successive items in a homogeneous numeric,

time, or duration list. There is one fewer item in the result than in the argument; if the argument is an empty

list, then null is returned. The primary time of the second item in each successive pair is kept. Its usage is:

<n:number> := INCREASE <m:number>

(4, -2, -1) := INCREASE (11, 15, 13, 12);

() := INCREASE 3;

null := INCREASE ();

<n:duration> := INCREASE <m:times>

(1 day) := INCREASE (1990-03-01, 1990-03-02);

(1 hour) := INCREASE (13:00:00, 14:00:00);

<n:duration> := INCREASE <m:duration>

(1 day) := INCREASE (1 day, 2 days);

9.14.8 Decrease (unary, right-associative)

The decrease operator returns a list of the negative differences between successive items in a homogeneous

numeric, time, or duration list. There is one fewer item in the result than in the argument; if the argument is

an empty list, then null is returned. Decrease is the additive inverse of increase. The primary time of the

second item in each successive pair is kept. Its usage is:

<n:number> := DECREASE <m:number>

(-4, 2, 1) := DECREASE (11, 15, 13, 12);

() := DECREASE 3;

null := DECREASE ();

<n:duration> := DECREASE <m:times>

((-1) day) := DECREASE (1990-03-01, 1990-03-02);

((-1) hour) := DECREASE (13:00:00, 14:00:00);

<n:duration> := DECREASE <m:duration>

((-1) day) := DECREASE (1 day, 2 days);

9.14.9 % Increase (unary, right-associative)

The % increase operator has one synonym: percent increase. It returns a list of the percent increase

between items in successive pairs in a homogeneous number or duration list (the denominator is the first

Arden Syntax for Medical Logic Systems

Page 88 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

item in each pair; if it is zero, then null is returned). The primary time of the second item in each successive

pair is kept. Its usage is:

<n:number> := % INCREASE <m:number>

(36.3636, -13.3333) := % INCREASE (11, 15, 13);

() := % INCREASE 3;

null := % INCREASE ();

<n:number> := % INCREASE <m:duration>

(100) := % INCREASE (1 day, 2 days);

9.14.10 % Decrease (unary, right-associative)

The % decrease operator has one synonym: percent decrease. It returns a list of the percent decrease

between items in successive pairs in a homogeneous number or duration list (the denominator is the first

item in each pair, if it is zero, then null is returned). The primary time of the second item in each successive

pair is kept. Its usage is:

<n:number> := % DECREASE <m:number>

(-36.3636, 13.3333) := % DECREASE (11, 15, 13);

() := % DECREASE 3;

null := % DECREASE ();

<n:number> := % DECREASE <m:duration>

(-100) := % DECREASE (1 day, 2 days);

9.14.11 Earliest ... From (binary, right-associative)

The earliest ... from operator expects a number (call it N) as its first argument and a list as its second

argument. It returns a list with the earliest N items from the argument list, in the order they appear in the

argument list. The result is null if N is not a non-negative integer. If any of the elements do not have

primary times, the result is null (the argument can always be qualified by where time of it is present, if

this is not desired behavior). If there are not enough items in the argument list, then as many as possible are

returned. This means that earliest 1 from x differs from earliest x if x is empty; the former returns () and

the latter returns null. The primary times of the argument are maintained. Its usage is:

<n:any-type> := EARLIEST <1:number> FROM <m:any-type>

() := EARLIEST 2 FROM ();

The earliest … from operator can also be extended by the using modifier as defined for the sort operator

(see 9.2.4) to allow more complex calculations of the earliest value. For example:

<n:object> := earliest 2 from <n:object> using it.birthday; //will return the

 // two oldest persons from a list of persons (represented by objects)

9.14.12 Latest ... From (binary, right-associative)

The latest ... from operator expects a number (call it N) as its first argument and a list as its second

argument. It returns a list with the latest N items from the argument list, in the order they appear in the

argument list. The result is null if N is not a non-negative integer. If any of the elements do not have

primary times, the result is null (the argument can always be qualified by where time of it is present, if

this is not desired behavior). If there are not enough items in the argument list, then as many as possible are

returned. This means that latest 1 from x differs from latest x if x is empty; the former returns () and the

latter returns null. The primary times of the argument are maintained. Its usage is:

<n:any-type> := LATEST <1:number> FROM <m:any-type>

() := LATEST 2 FROM ();

The latest … from operator can also be extended by the using modifier as defined for the sort operator (see

9.2.4) to allow more complex calculations of the latest value. For example:

<n:object> := latest 2 from <n:object> using it.birthday; //will return the

 // two youngest persons from a list of persons (represented by objects)

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 89

Revision date: 10/4/2023 Print date: 10/4/2023

9.14.13 Index Extraction Transformation Operators

These operators behave similarly to their non-index extracting counterparts with the exception that they

return the value of the index of the element that matches the specified criteria rather than the element itself.

These operators do not maintain primary times.

9.14.13.1 Index Minimum ... From (binary, right-associative)

The index minimum ... from operator has one synonym: index min ... from. It expects a number (call it

N) as its first argument and a homogeneous list of an ordered type as its second argument. It returns a list

with the indices of the N smallest items from the argument list, in the same order that they are in the second

argument, and with any duplicates preserved. The result is null if N is not a non-negative integer. If there

are not enough items in the argument list, then as many indices as possible are returned. If there is a tie,

then it selects the latest of those elements that have a primary time. The primary times of the argument are

not maintained. Its usage is:

<n:number> := INDEX MINIMUM <1:number> FROM <m:ordered>

(1, 4) := INDEX MINIMUM 2 FROM (11, 14, 13, 12);

(3, 4, 6) := INDEX MINIMUM 3 FROM (3, 5, 1, 2, 4, 2);

null := INDEX MIN 2 FROM (3, "asdf");

(1) := INDEX MINIMUM 2 FROM 3;

() := INDEX MINIMUM 0 FROM (2,3);

9.14.13.2 Index Maximum ... From (binary, right-associative)

The index maximum ... from operator has one synonym: index max ... from. It expects a number (call it

N) as its first argument and a homogeneous list of an ordered type as its second argument. It returns a list

with the indices of the N largest items from the argument list, in the same order that they are in the second

argument, and with any duplicates preserved. The result is null if N is not a non-negative integer. If there

are not enough items in the argument list, then as many indices as possible are returned. If there is a tie,

then it selects the latest of those elements that have a primary time. The primary times of the argument are

not maintained. Its usage is:

<n:number> := INDEX MAXIMUM <1:number> FROM <m:ordered>

(2, 3) := INDEX MAXIMUM 2 FROM (11, 14, 13, 12);

(2, 3, 5) := INDEX MAXIMUM 3 FROM (3, 5, 1, 2, 4, 2);

null := INDEX MAX 2 FROM (3, "asdf");

(1) := INDEX MAXIMUM 2 FROM 3;

() := INDEX MAXIMUM 0 FROM (2, 3);

9.14.13.3 First… From; Last… From

There are no index extraction operator parallels for first … from and last … from as these can be

generated using either the seqto operator (for first … from) or the seqto and count operators (for last …

from). Thus if these functions are needed, use the following:

Index First x From y : 1 seqto x

Index Last x From y : (count(y)-x) seqto count(y)

9.15 Query Transformation Operator

9.15.1 General Properties

The query transformation operator does not follow the default list handling, or the default primary time

handling. It transforms a list, producing another list. If the list argument is a single item, then it is treated as

a list of length one. The result is always a list even if there is only one item (except if there is an error, in

which case the result is null).

The query transformation operator can only be applied to the result of a query, since it requires that a time

be associated with each item in the argument list. Null is returned if it is used on other data.

The query transformation operator may optionally be followed by of.

Arden Syntax for Medical Logic Systems

Page 90 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

9.15.2 Interval (unary, right-associative)

The interval operator returns the difference between the primary times of succeeding items in a list. It is

analogous to increase. The primary times of the argument are lost. Its usage is (assuming that data is the

result of a query with these primary times: 1990-03-15T15:00:00, 1990-03-16T15:00:00, 1990-03-

18T21:00:00):

<n:duration> := INTERVAL <m:any-type>

(1 day, 2.25 days) := INTERVAL data;

null := INTERVAL (3, 4);

9.16 Numeric Function Operators

The numeric function operators are all unary functions that work with numbers. When an illegal operation

is attempted (for example, log 0) then null is returned.

9.16.1 Arccos (unary, right-associative)

The arccos operator calculates the arc-cosine (expressed in radians) of its argument. Its usage is:

<n:number> := ARCCOS <n:number>

0 := ARCCOS 1;

9.16.2 Arcsin (unary, right-associative)

The arcsin operator calculates the arc-sine (expressed in radians) of its argument. Its usage is:

<n:number> := ARCSIN <n:number>

0 := ARCSIN 0;

9.16.3 Arctan (unary, right-associative)

The arctan operator calculates the arc-tangent (expressed in radians) of its argument. Its usage is:

<n:number> := ARCTAN <n:number>

0 := ARCTAN 0;

9.16.4 Cosine (unary, right-associative)

The cosine operator has one synonym: cos. It calculates the cosine of its argument (expressed in radians).

Its usage is:

<n:number> := COSINE <n:number>

1 := COSINE 0;

9.16.5 Sine (unary, right-associative)

The sine operator has one synonym: sin. It calculates the sine of its argument (expressed in radians). Its

usage is:

<n:number> := SINE <n:number>

0 := SINE 0;

9.16.6 Tangent (unary, right-associative)

The tangent operator has one synonym: tan. It calculates the tangent of its argument (expressed in

radians). Its usage is:

<n:number> := TANGENT <n:number>

0 := TANGENT 0;

9.16.7 Exp (unary, right-associative)

The exp operator raises mathematical e to the power of its argument. Its usage is:

<n:number> := EXP <n:number>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 91

Revision date: 10/4/2023 Print date: 10/4/2023

1 := EXP 0;

9.16.8 Log (unary, right-associative)

The log operator returns the natural logarithm of its argument. Its usage is:

<n:number> := LOG <n:number>

0 := LOG 1;

9.16.9 Log10 (unary, right-associative)

The log10 operator returns the base 10 logarithm of its argument. Its usage is:

<n:number> := LOG10 <n:number>

1 := LOG10 10;

9.16.10 Int (unary, right-associative)

The int operator returns the largest integer less than or equal to its argument (truncates towards negative

infinity). It is synonymous with floor (Section 9.16.11). Its usage is:

<n:number> := INT <n:number>

-2 := INT (-1.5);

-2 := INT (-2.0);

 1 := INT (1.5);

-3 := INT (-2.5);

-4 := INT (-3.1);

-4 := INT (-4);

9.16.11 Floor (unary, right-associative)

The floor operator is synonymous with int. It returns the largest integer less than or equal to its argument

(truncates towards negative infinity).

9.16.12 Ceiling (unary, right-associative)

The ceiling operator returns the smallest integer greater than or equal to its argument (truncates towards

positive infinity). Its usage is:

<n:number> := CEILING <n:number>

-1 := CEILING (-1.5);

-1 := CEILING (-1.0);

 2 := CEILING 1.5;

-2 := CEILING (-2.5);

-3 := CEILING (-3.9);

9.16.13 Truncate (unary, right-associative)

The truncate operator removes any fractional part of a number (truncates towards zero). Its usage is:

<n:number> := TRUNCATE <n:number>

-1 := TRUNCATE (-1.5);

-1 := TRUNCATE (-1.0);

 1 := TRUNCATE 1.5;

9.16.14 Round (unary, right-associative)

The round operator rounds a number to an integer.

For positive numbers: If the fractional portion of the operand is greater than or equal to 0.5, the operator

rounds to the next highest integer. Fractional portions less than 0.5 round to the next lowest integer.

Arden Syntax for Medical Logic Systems

Page 92 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

For negative numbers: If the absolute value of the fractional portion of the operand is greater than or equal

0.5, the operator rounds to the next lower negative integer. Fractional portions with absolute values less

than 0.5 round to the next highest integer.

Its usage is:

<n:number> := ROUND <n:number>

 1 := ROUND 0.5;

 3 := ROUND 3.4;

 4 := ROUND 3.5;

-4 := ROUND (-3.5);

-3 := ROUND (-3.4);

-4 := ROUND (-3.7);

9.16.15 Abs (unary, right-associative)

The abs operator returns absolute value of its argument. Its usage is:

<n:number> := ABS <n:number>

1.5 := ABS (-1.5);

9.16.16 Sqrt (unary, right-associative)

The sqrt operator returns the square root of its argument. Because imaginary numbers are not supported,

the square root of a negative number results in null. Its usage is:

<n:number> := SQRT <n:number>

2 := SQRT 4;

null := SQRT(-1);

9.17 Time Function Operator

The time function operator does not follow the default primary time handling.

9.17.1 Time (unary, right-associative)

The time operator returns the primary time (that is, time of occurrence) of the result of a value derived

from a query (see Section 8.9). Null is returned if it is used on data that has no primary time. The result of

time preserves the primary time of its argument; so time time x is equivalent to time x. Its usage is

(assuming that data0 is the result of a query with one element whose primary time is: 1990-03-

15T15:00:00):

<n:time> := TIME [OF] <n:any-type>

1990-03-15T15:00:00 := TIME OF data0;

1990-03-15T15:00:00 := TIME TIME data0;

(null, null) := TIME (3, 4);

The inverse of the time operator (to set the primary time of a value) can be achieved by using time on the

left side of an assignment statement. For example:

TIME [OF] <n:any-type> := <n:time>

TIME data1 := time data2;

If the identifier on the left hand side of an assignment statement refers to a list, the behavior of the time

assignment is undefined. Future versions of the Arden Syntax standard may formally define this behavior.

If the right side of the assignment statement does not refer to a time value, the time operator assigns null to

the primary time of the identifier at the left hand side.

9.17.2 Time of Objects

When an object is passed to the time operator, the result will be null if one or more attributes do not

reference a data item with a primary time, if the data contain primary times but those times differ, or if the

object contains no attributes. If all the objects attributes refer to data items with primary times, and all those

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 93

Revision date: 10/4/2023 Print date: 10/4/2023

times are equivalent, then this time is returned as the time of the object. If an attribute contains a list, then

the primary time of the object is not defined (returns null) since lists do not have a specific primary time.

LabResult := OBJECT [id, value];

result := new LabResult;

result.id := 123;

time of result.id := 2004-01-16T00:00:00;

result.value := 1.0;

time of result.value := 2004-01-16T00:00:00;

2004-01-16T00:00:00 := time of result; // all attributes have same primary
time

2004-01-16T00:00:00 := time of result.id;

time of result.id := 2004-01-17T00:00:00;

null := time of result; // primary times differ

2004-01-17T00:00:00 := time of result.id;

9.17.3 Attime (binary, right-associative)

The attime operator constructs a time value from two time and time-of-day arguments. The result consists

of the date of the time arguments and the time of the time-of-day argument. Null is returned if it is used

with other arguments than time and time-of-day. The primary times are lost.

<n:time> := <n:time> ATTIME <n:time-of-day>

2006-06-20T15:00:00 := now ATTIME 15:00:00;

2001-01-01T14:30:00 := TIME OF intuitive_new_millenium ATTIME 14:30:00;

This operator was known as the at operator in Arden Syntax 2.6. The change from at to attime was made

to resolve a conflict in context-free grammar (Annex 1) and remove the need for precedence rules to

properly parse write statements (13.2.1) that utilize destinations.

9.18 Object Operators

9.18.1 Dot (binary, right-associative)

The dot operator (".") selects an attribute from an object based on the name following the dot. It takes an

expression and an identifier. The expression typically evaluates to an object or a list of objects.

<n:any-type> := <expr> "." <identifier>

If the expression does not evaluate to an object, or if the object does not contain the named attribute, then

null is returned. If the expression evaluates to a list, normal Arden list handling is used, and a list is

returned. Therefore, if the expression is a list of objects, then a list (of the same length) of the attribute

values named by the identifier is returned (a common usage).

NameType := object [FirstName, LastName];

/* Assume namelist contains a list of 2 NameType objects */

("John", "Paul") := namelist.FirstName;

("Lennon", "McCartney") := namelist.LastName;

"John" := namelist[1].FirstName;

 null := namelist[1].Height;

(null, null) := namelist.Height;

The dot operator maintains the primary time of the attribute it references.

chemistry_panel := object [albumin, calcium, phosphorus];

/* assume patientResult is a single chemistry_panel object with albumin = 4.0
mg/dL, calcium = 8.7 mg/dL and phosphorus = 3.0 mg/dL on 15 December 2004
*/

calciumPhosphorusProduct := patientResult.calcium * patientResult.phosphorus;

Arden Syntax for Medical Logic Systems

Page 94 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

26.1 := calciumPhosphorusProduct;

2004-12-15T16:00:00 := time of patientResult.calcium;

Dot operators may be used together, when objects are stored as attributes of other objects.

PatientInfo := object [Name, Birthdate];

/* Assume patient contains an object of type PatientInfo, and the Name
attribute contains an object of type NameType */

"John" := patient.Name.FirstName;

9.18.2 Clone (unary, right-associative)

The clone operator returns a copy of its argument. Practically, this only affects objects, because these are

the only data types which retain identity across multiple operations. (See Annex A6 for details of object

identity). When an object is copied, a new object of the same type is created, and all its fields are initialized

by assigning values from corresponding fields in the argument object. The fields, which may contain

objects, are themselves cloned, resulting in a deep copy. If any field contains a list, that list is cloned, and

any objects stored in the list are also cloned.

The clone operator insures that no objects are shared between the argument and the result. The clone

returns another, distinct object that has the same structure and value as the original object.

Effectively, clone works like this depending on the argument type:

Object A deep copy of the object is returned.

List A copy of the list is returned, which contains a clone of each item in the original

list, in the same order.

Other types The original item is returned.

<n:any-type> := CLONE [OF] <n:any-type>

<Copy of Object> := CLONE OF <Object>;

1990-03-15T15:00:00 := CLONE OF 1990-03-15T15:00:00;

(1, 2, <Copy of Object>) := CLONE (1, 2, <Object>);

null := CLONE null;

When the clone operator is applied, the resulting object will contain the same primary times as the

argument object. Application of the clone operator to a top-level object or any embedded objects ensures

that the fields in any new object have the same primary time as the original fields.

9.18.3 Extract Attribute Names ... (unary, right-associative)

The extract attribute names operator expects an object as its argument. It returns a list containing the

attribute names of the object argument. Only the immediate attribute names of the argument are returned. If

an attribute is itself an object, the attribute names of the embedded object are not returned, i.e. no nested

lists. If the argument is not an object, null is returned.

<n:string> := EXTRACT ATTRIBUTE NAMES <1:any-type>

(in data slot)

MedicationDose := OBJECT [Medication, Dose, Status];

dose := NEW MedicationDose with "Ampicillin", "500mg", "Active";

(in data slot or logic slot)

dose_attributes := extract attribute names dose;

dose_attributes = ("Medication", "Dose", "Status");

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 95

Revision date: 10/4/2023 Print date: 10/4/2023

9.18.4 Attribute … From … (binary, right-associative)

The attribute … from … operator expects a string containing the name of an attribute and an object as

arguments. It returns the value of the named attribute. If the named attribute is itself an object, the sub-

object is returned. If no attributes with the supplied name exists within the named object, null is returned.

This is analogous to referring to attributes using dot notation. However, the attribute … from … operator

allows the name of the attribute to be supplied at run-time rather than requiring knowing the attribute name

at design-time.

<n:any-type> := attribute <m:string> FROM <m:object>

(in data slot)

MedicationDose := OBJECT [Medication, Dose, Status];

dose := NEW MedicationDose with "Ampicillin", "500mg", "Active";

(in data slot or logic slot)

medication_name := attribute "Medication" from dose;

medication_name = "Ampicillin";

medication_name := dose.Medication;

medication_name = "Ampicillin";

dose_attributes := extract attribute names dose;

medication_name := attribute dose_attributes[1] from dose;

medication_name = "Ampicillin";

9.19 Fuzzy Operators

9.19.1 Fuzzy Set … (unary, right-associative)

The fuzzy set … operator creates a new fuzzy set as described in 8.14.1, 8.14.2, or 8.14.3, according to the

provided parameters. The operator returns null if the data types are not compatible. Its usage is:

<1:fuzzy-number> := FUZZY SET "(" <1:number>, <1:truth-value>")", "("
<1:number>, <1:truth-value>")", ...

Var1 := fuzzy set (2, truth value 0), (3, truth value 1), (4, truth value
1), (5, truth value 0);

<1:fuzzy-time> := FUZZY SET "(" <1:time>, <1:truth-value>")", "(" <1:time>,
<1:truth-value>")", ...

Var2 := fuzzy set (now – 2 days, truth value 0), (now, truth value 1),
(now + 1 day, truth value 0);

Var3 := fuzzy set (2001-12-12, truth value 0), (2003-12-12, truth value
1), (2009-01-01, truth value 0);

<1:fuzzy-duration> := FUZZY SET "(" <1:duration>, <1:truth-value>")", "("
<1:duration>, <1:truth-value>")", ...

Var4 := fuzzy set (2 days, truth value 0), (3 days, truth value 1), (4
days, truth value 1), (5 days, truth value 0);

9.19.2 Fuzzified By (binary, non-associative)

The … fuzzified by … operator creates a new triangular fuzzy set as described in 8.14.1, 8.14.2, or 8.14.3,

according to the provided parameters. The operator returns null if the data types are not compatible. Its

usage is:

<1:fuzzy-number> := <1:number> FUZZIFIED BY <1:number>

Arden Syntax for Medical Logic Systems

Page 96 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

Var1 := 7 fuzzified by 2;

<1:fuzzy-time> := <1:time> FUZZIFIED BY <1:duration>

Var2 := now fuzzified by 2 days;

<1:fuzzy-duration> := <1:duration> FUZZIFIED BY <1:duration>

Var3 := 7 days fuzzified by 2 hours;

9.19.3 Defuzzified … (unary, right-associative)

The defuzzified operator expects a fuzzy data type value as its argument. The operator converts a fuzzy set

into a crisp data type. To calculate the result, the mean of maximum method is used. This method

calculates the average of those intervals’ midpoints, which are mapped to the maximum of the fuzzy set

image. The usage of the operator is:

<n:crisp-type> := DEFUZZIFIED <n:fuzzy-type>

7 := Defuzzified 7 fuzzified by 2;

9.19.4 Applicability [of] … (unary, non-associative)

The applicability of operator returns the degree of applicability of a value. Since null is not allowed as

degree of applicability, a value is always returned (default degree of applicability is 1). The result of the

applicability operator preserves the primary time and the degree of applicability of its argument; therefore,

applicability applicability x is equivalent to applicability x. Its usage is (assuming that data0 has the

degree of applicability of 0.44):

<n:truth-value> := APPLICABILITY [OF] <n:any-type>

truth value 0.44 := APPLICABILITY OF data0;

truth value 0.44 := APPLICABILITY APPLICABILITY data0;

(truth value 1, truth value 1) := APPLICABILITY (3, 4);

The inverse of the applicability operator (to set the degree of applicability of a value) can be achieved by

using the applicability operator on the left side of an assignment statement. For example:

APPLICABILITY [OF] <n:any-type> := <n:truth-value>

APPLICABILITY data1 := TRUTH VALUE 0.44;

If the identifier on the left hand side of an assignment statement refers to a list, the behavior of the

applicability assignment is undefined.

9.19.5 Applicability of Objects

When an object is passed to the applicability operator, the result will be null if the attributes are referring

to data items with different applicabilities, or if the object contains no attributes. If all the objects attributes

refer to data items with equivalent applicability, then this applicability is returned as the applicability of the

object. If an attribute contains a list, then the applicability of the object is not defined (returns null) since

lists do not have a specific applicability.

LabResult := OBJECT [id, value];

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 97

Revision date: 10/4/2023 Print date: 10/4/2023

result := new LabResult;

result.id := 123;

APPLICABILITY of result.id := TRUTH VALUE 0.44;

result.value := 1.0;

APPLICABILITY of result.value := TRUTH VALUE 0.44;

truth value 0.44 := APPLICABILITY of result; // all attributes have same
applicability

truth value 0.44 := APPLICABILITY of result.id;

APPLICABILITY of result.id := TRUTH VALUE 0.5;

null := APPLICABILITY of result; // applicabilities differ

truth value 0.5 := APPLICABILITY of result.id;

9.20 Type Conversion Operator

9.20.1 As Number (unary, non-associative)

The as number operator attempts to convert a string or Boolean into a number. If conversion into a number

is possible, the number is returned, otherwise null is returned. The primary time of the argument is

preserved. The regular use of this operator would be the conversion of a string that contains a valid number

representation i.e. "123" into the represented number. If the string does not contain a valid number, the

result will be null. Boolean values are translated as follows: Boolean true is represented at 1 and Boolean

false is represented at 0.

<n:number> := <n:numeric string> AS NUMBER

5 := "5" AS NUMBER;

null := "xyz" AS NUMBER;

<n:number> := <n:Boolean> AS NUMBER

1 := True AS NUMBER;

0 := False AS NUMBER;

<n:number> := <n:number> AS NUMBER

6 := 6 AS NUMBER;

(7, 8, 230, 4100, null, null, 1, 0, null, null, null) := ("7", 8,
"2.3E+2", 4.1E+3, "ABC", Null, True, False, 1997-10-31T00:00:00, now, 3
days) AS NUMBER;

():= () AS NUMBER;

9.20.2 As Time (unary, non-associative)

The as time operator attempts to convert a given string into a time. If conversion into a time is possible, the

time is returned, otherwise null is returned. The primary time of the argument is preserved. The common

use of this operator is the conversion of a string containing a valid date/time format as described in ISO

8601:1988(E), e.g., "1999-12-12" or "1999-12-12T13:41", into a time.

<n:time> := <n:string> AS TIME

<n:time> := <n:time> AS TIME

1999-12-12 := "1999-12-12" AS TIME;

null := "xyz" AS TIME;

(1999-12-12, 1999-12-12, null, null, null, 1997-10-31T00:00:00, null) :=
("1999-12-12", 1999-12-12, "ABC", Null, True, "1997-10-31T00:00:00", 3
days) AS TIME;

():= () AS TIME;

9.20.3 As String (unary, non-associative)

The as string operator attempts to convert any data type into a string. If conversion into a string is possible,

the string is returned, otherwise null is returned. The primary time of the argument is preserved.

Arden Syntax for Medical Logic Systems

Page 98 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<n:string> := <n:any-type> AS STRING

"5" := 5 AS STRING;

"null" := null AS STRING;

"true" := True AS STRING;

"false" := False AS STRING;

("7", "8", "4100", "ABC", "null", "true", "false", "1997-10-31T00:00:00",
"3 days") := ("7", 8, 4.1E+3, "ABC", Null, True, False, 1997-10-
31T00:00:00, 3 days) AS STRING;

():= () AS STRING;

9.20.4 As Truth Value (unary, non-associative)

The as truth value operator attempts to convert a number or Boolean into a truth value. If the conversion

into a truth value is possible, the truth value is returned, otherwise null is returned. The primary time of the

argument is preserved. The regular use of this operator is to convert a calculated number into the

corresponding truth value. If the number is not between 0 and 1, the result will be null. Boolean values are

translated as follows: Boolean true is represented as truth value 1 and Boolean false is represented as truth

value 0.

<n:truth-value> := <n:number> AS TRUTH VALUE

truth value 0.33 := 0.33 AS TRUTH VALUE;

null := "xyz" AS TRUTH VALUE;

null := 400 AS TRUTH VALUE;

<n:truth value> := <n:Boolean> AS TRUTH VALUE

truth value 1 := True AS TRUTH VALUE;

truth value 0 := False AS TRUTH VALUE;

(truth value 0, truth value 1, null, truth value 0.33, null, truth value
1, truth value 0, null, null, null) := (0, 1, 4.1E+3, 0.33, Null, True,
False, 1997-10-31T00:00:00, 3 days, "ABC") AS TRUTH VALUE;

() := () AS TRUTH VALUE;

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 99

Revision date: 10/4/2023 Print date: 10/4/2023

10 LOGIC SLOT

10.1 Purpose

The logic slot uses data about the patient obtained from the data slot, manipulates the data, tests some

condition, and decides whether to execute the action slot. It is in this slot that most of the actual health logic

is obtained.

10.2 Logic Slot Statements

The logic slot is composed of a set of statements.

10.2.1 Assignment Statement

The assignment statement places the value of an expression into a variable. There are two equivalent

versions:

<identifier> := <expr>;

LET <identifier> BE <expr>;

<identifier> is an identifier; it represents the name of the variable. <expr> is a valid expression as defined

in Section 7.2.3.

Any reference to the identifier that occurs after the assignment statement will return the value that was

assigned from the expression (even if it is in another structured slot; for example, the action slot). A

subsequent assignment to the same variable will overwrite the value. If a variable is referred to before its

first assignment, null is returned. However, it is poor programming practice to depend on this.

The following variables cannot be re-assigned outside of the data slot after they have been assigned in the

data slot: event (Section 11.2.3), mlm (Section 11.2.4), and interface (Section 11.2.16). Once defined in

the data slot, they should not change.

After executing these statements, the value of variable var2 is 5:

 var1 := 1;

 var1 := 3;

 var2 := var1 + 2;

10.2.1.1 Object Attribute Assignment

The identifier on the left side of an assignment statement may be specified by an object attribute reference,

using the following form:

<identifier> . <attribute-name>

This allows the assignment to individual attributes of an object. The identifier should name a variable.

When the statement is executed, if the variable references an object whose type contains an attribute of the

specified name, then that attribute value will be set to the result of evaluating the expression on the right

side of the assignment statement.

If at execution time the named variable does not refer to an object, or that object does not contain an

attribute of the specified name, then this statement will still evaluate the expression but will not assign the

result.

Rectangle := Object [Left, Top, Width, Height];

rect := new Rectangle;

// assign attributes

rect.Left := 0;

rect.Top := 0;

rect.Width := 10;

rect.Height := 20;

Arden Syntax for Medical Logic Systems

Page 100 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

// incorrect assignment

rect.Depth := 30;

null := rect.Depth;

Note that objects in Arden retain their identity during assignment, references, etc. If more than one

reference to an object exists, and that object is modified, other references to the same object will be

affected.

rect1 := new Rectangle;

// assign attributes

rect1.Left := 0;

rect1.Top := 0;

rect1.Width := 10;

rect1.Height := 20;

rect2 := rect1; // references the same Rectangle

rect1.Width := 50;

50 := rect2.Width; // rect2.width reflects change to shared object

10.2.1.2 Enhanced Assignment Statement

In addition to the basic assignment and simple object assignment statements described above, any

expression that ends with a dot operation (Section 9.18.1) or element operation (Section 9.12.18) may be

placed on the left hand side of an assignment statement. This does not apply for multiple-assignment. If the

left side contains a parenthesised list of variables, then this arbitrary expression syntax may not be used.

This enhancement streamlines the processing of lists and objects. For example,

//simple example using index

my_list := 5, 10, 15;

my_list[3] := 20; //contents of my_list are now 5, 10, 20

//create one object with three nested objects

message_type := OBJECT [id, msg];

my_collection_type := OBJECT [name, message_list];

message_list := ();

for i in 1 seqto 3 do

 message_text := new message_type with i, "this is message " || i;

 message_list := message_list, message_text;

enddo;

my_obj := new my_collection_type with "Reminders", message_list;

//traditional syntax

n := 2;

obj1 := my_obj.message_list[n];

obj1.msg := "this is a replacement message";

message2 := new message_type with 10, "this is message 10";

my_obj.message_list := first (n-1) from my_obj.message_list,

 message2, last (count of my_obj.message_list - n) from
my_obj.message_list;

var1 := first (n-1) from my_obj.message_list;

var2 := last (count of my_obj.message_list - n) from my_obj.message_list;

//enhanced syntax

n := 2;

my_obj.message_list[n].msg := "this is a replacement message"; //modify nth
item

my_obj.message_list[n] := new message_type with 10, "this is message 10";
//replace nth item

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 101

Revision date: 10/4/2023 Print date: 10/4/2023

//additional examples

my_obj.message_list.msg := "This is a test"; //modifies message in all
objects

my_var := my_obj.message_list.msg; //contents of my_var are "This is a test",
"This is a test", "This is a test"

my_list[1] := my_var; //contents of my_list changed to "This is a test",
"This is a test", "This is a test", 10, 20

10.2.2 If-Then Statement

The if-then statement permits conditional execution based upon the value of an expression. It tests whether

the expression (<expr>) is equal to a single Boolean true. If it is, then a block of statements (<block>) is

executed. (A block of statements is simply a collection of valid statements possibly including other if-then

statements; thus the if-then statement is a nested structure.) If the expression results in any truth value (t)

between 0 and 1, the block of statements (<block>) is executed and the degree of applicability of each

variable is multiplied by t. If the result of the expression is a list, or any single item other than true or a

truth value, the block of statements is not executed. The flow of control then continues with subsequent

statements. The if-then statement has several forms:

10.2.2.1 Simple If-Then Statement

This form executes <block1> if <expr1> is true:

IF <expr1> THEN

<block>

ENDIF;

10.2.2.2 If-Then-Else Statement

This form executes <block1> if <expr1> is true; otherwise it executes <block2>:

IF <expr1> THEN

<block1>

ELSE

<block2>

ENDIF;

If, however, <expr1> is any truth value (t) between 0 and 1, the program splits: <block1> and <block2>

will be executed in parallel. To this end, each branch is provided with its own set of variables which,

accordingly, are duplicated.

Moreover, the degree of applicability of each variable is in the case of <block1> multiplied by t, in the case

of <block2> multiplied by 1 − t. t and 1 − t are called relative weights of <block1> and <block2>,

respectively. The weight of an MLM evaluation is 1 as long as it does not split.

The program may branch several times. When the weight of the current branch is w and the MLM

evaluation enters a branch with relative weight t, the weight will be reduced to w · t.

In a branch of weight w, the range of the degree of applicability of any variable is [0, w]. Whenever the

content of a variable is changed, its degree of applicability will be reduced to w, if necessary. For example:

Var := 0;

Con := truth value 0.2;

If con then

 Var := Var + 1;

Else

 Var := Var + 3;

Endif;

The result of this example are two branches of the MLM execution, where in the first branch Var has the

value 1 and the degree of applicability 0.2 and in the second branch Var has the value 3 and the degree of

applicability 0.8. That is, the execution of the MLM returns two different values with different degrees of

applicability. A nested example would be:

Arden Syntax for Medical Logic Systems

Page 102 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

Logic:

Var := 0;

Bool_true := true;

Con := truth value 0.2;

con_second := truth value 0.3;

IF Con THEN

Var := Var + 1;

IF con_second THEN

Var := Var + 1;

ELSE

Var := Var + 3;

ENDIF;

ELSE

Var := Var + 3;

ENDIF

CONCLUDE TRUE;

Action:

WRITE Var;

As above, the MLM execution splits into 2 branches on the first IF statement. The second IF statement

branches the first branch again into 2 separate executions. Those 3 Branches are executed in parallel.

The expected output:

• 2 with applicability=0.06 (THEN->THEN)

• 4 with applicability=0.14 (THEN->ELSE)

• 3 with applicability=0.8 (ELSE)

The sum of all applicabilities of a variable is 1.

If a conclude statement occurs within a branch the execution of this branch stops immediately. The

execution of all other branches continues. For example:

Logic:

Var := 0;

Bool_true := true;

Con := truth value 0.2;

IF Con THEN

Var := Var + 1;

CONCLUDE FALSE;

ELSE

Var := Var + 3;

ENDIF;

CONCLUDE TRUE;

Action:

WRITE Var;

As specified, the CONCLUDE statement stops the execution of the affected branch. The other branch is

executed until the end of the MLM and the expected output is 3 with applicability of 0.8.

10.2.2.3 If-Then-Elseif Statement

This form sequentially tests each of the expressions <expr1> to <exprN> (there may be any number of

them). When it finds one that is true, its associated block is executed. Once one block is executed, no other

expressions are tested, and no other blocks are executed. If none of the expressions is true, then <blockE>

is executed. The else <blockE> portion is optional. Its form is:

IF <expr1> THEN

<block1>

ELSEIF <expr2> THEN

<block2>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 103

Revision date: 10/4/2023 Print date: 10/4/2023

ELSEIF <expr3> THEN

<block3>

...

ELSEIF <exprN> THEN

<blockN>

ELSE

<blockE>

ENDIF;

If the expressions are truth values, the execution of the MLM is split into n branches. Branching into n + 1

blocks is possible by the following statement:

IF <expr1> then <block1>

ELSEIF <expr2> then <block2>

...

ELSEIF <exprN> then <blockN>

ELSE <blockN+1>

ENDIF;

In this case, the relative weight ti of the ith branch is given by <expri>, where i = 1, ..., n. If <expri> is

undefined, it is treated as ti = 0, in which case the branch is not executed. Moreover, if the sum of the ti is

strictly smaller than 1, the relative weight of blockn+1 will be 1 − t1 − ... − tn, otherwise this block is skipped.

10.2.2.4 If-Then-Elseif-Aggregate Statement

As shown in section 10.2.2.2, the program execution is split, if the condition of an if-then-else statement

evaluates to any truth value between 0 and 1.

Once all branches of a program have completed their execution in parallel, because of an unsharp

condition, it is difficult to give a general recommendation on how the program should proceed. Two

possibilities exist:

(A) The program remains split, that is, all subsequent commands are executed in parallel as well, the

action slot included.

(B) The program reunifies. The multiplied variables are merged into single ones.

Both options are available and (A) is the default. Which possibility is chosen should be decided

individually, according to the characteristics of each situation.

If (A) is selected, the MLM’s results will be provided by each branch separately. The application to which

the results are sent−the host system or the calling MLM−must be prepared to deal with the situation. If the

MLM is called by another MLM and returns data, the calling MLM splits accordingly as well.

The possibility (B) implies that the task of combining divergent pieces of information is executed within

the MLM itself. To opt for (B), the final line of an if-then-else statement is modified: after the keyword

endif, the keyword aggregate is added. Thus, when writing

IF <expr> then <block1>

ELSE <block2>

ENDIF AGGREGATE;

the two branches unify after their execution. The program weight is then set to the sum of the weight of the

branches, i.e., to the same value as before.

Moreover, corresponding variables are aggregated.

Let Var be a variable defined in at least one branch. As far as the main component is concerned, the

procedure is as follows:

• If the content of Var is the same in each branch, the content is taken over.

• Otherwise, if Var is defined in all branches and of the same simple data type except string, the

contents are aggregated according to their weighted middle.

Arden Syntax for Medical Logic Systems

Page 104 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

• If Var is of the same compound type in all branches, we proceed successively with the components

in the same manner.

• In the remaining cases, Var is set to null.

The aggregation of the contents of variables, with respect to the degree of applicability and the primary

time, is straightforward. The primary time of Var is transferred if coincident in all branches. If distinct times

appear, the primary time will be set to null.

Furthermore, as might be expected, the degrees of applicability are added. Thus, if left unchanged during

the execution of all branches, the degree of applicability prior to the execution of the if-then-else statement

will be restored. For example:

Logic:

Var := 0;

Bool_true := true;

Con := truth value 0.2;

IF Con THEN

Var := Var + 1;

ELSE

Var := Var + 3;

ENDIF AGGREGATE

CONCLUDE TRUE;

Action:

WRITE Var;

The MLM execution branches at the IF statement and the expressions in the THEN and ELSE branch are

executed in parallel. When execution reaches the ENDIF AGGREGATE statement the aggregated value of

Var is calculated. After the ENDIF AGGREGATE statement Var has the value (0.2*1 + 0.8*3) / (0.2 + 0.8)

= 2.6. The expected output is 2.6 with the applicability of 1.

Example X2.12 illustrates the difference between using the aggregate and not using aggregate. If the MLM

is called with an age of 19.9 years the results will be 8 with applicability of 0.1 and 15 with applicability of

0.9. If the MLM is adjusted to use aggregate at the endif the recommended dose will be 14.3

(8*0.1+15*0.9).

10.2.2.5 Treatment of Null

It is important to emphasize that non-true is different from false. That is, the else portion of the if-then-else

statement is executed whether the expression is false, or null, or anything other than true. Thus these two

if-then statements, which appear to be the same, produce different results when var1 is null.

IF var1 THEN

var2 := 0;

ELSE

var2 := 45;

ENDIF;

IF not(var1) THEN

var2 := 45;

ELSE

var2 := 0;

ENDIF;

To avoid the null problem, it is safer to test for existence first, then test for true.

IF var1 is Boolean THEN

 IF var1 THEN

 var2 := "var1 is true";

 ELSE

 var2 := "var1 is false";

 ENDIF;

ELSE

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 105

Revision date: 10/4/2023 Print date: 10/4/2023

 var2 := "var1 is null or some other type";

ENDIF;

10.2.2.6 Treatment of Lists

Lists are always non-true; therefore using an expression that contains a list will always produce the same

negative result. Instead, one of the Boolean aggregation operators should be used: any, all, or no (see

Sections 9.12.13, 9.12.14, and 9.12.15). For example, to execute a statement if any of the elements in

Bool_list is true, use:

IF any(Bool_list) THEN

var2 := 0;

ENDIF;

10.2.3 Switch-Case Statement

The switch-case statement permits conditional execution based on the value of an expression. It tests

whether an expression (<expr1>, <expr2>, <expr3> …) is equal to the value of the provided variable

(<var>). If the expression is a fuzzy set the is [in] operator is used to test equality, in all other cases the

equals operator is used. If the equality check does not return false, the corresponding block of statements

(<block1>, <block2>, <block3> …) is executed. A block of statements is simply a collection of valid

statements, possibly including other switch-case statements; thus the switch-case statement is a nested

structure. If the expression does not match the value of the provided variable, then the corresponding block

of statements is not executed. The flow of control then continues with subsequent statements.

The switch-case statement has several forms:

10.2.3.1 Simple Switch-Case Statement

This form executes <block1> if the value of <var> equals <expr1> and <block2> if the value is equal to

<expr2>:

SWITCH <var>

 CASE <expr1>

 <block1>

 CASE <expr2>

 <block2>

ENDSWITCH;

The following example will set the variable “returnVal” to 7 if the value of the incoming variable “inVal” is

equal to 1 and to 9 if the value of the incoming variable “inVal” is equal to 2.

switch inVal

 case 1

 returnVal := 7;

 case 2

 returnVal := 9;

endswitch;

Equivalent to the if-then-elseif statement (see Section 10.2.2.3), the execution of a switch-case statement

can split the program execution into several program branches which will be executed in parallel. This

happens if the comparison between the value of a variable and an <expr> evaluates to a truth value

between 0 and 1. For example:

age := 16;

young := FUZZY SET (0, truth value 1), (15, truth value 1), (20, truth value
0);

middle_aged := FUZZY SET (15, truth value 0), (20, truth value 1), (60, truth
value 1), (70, truth value 0);

dose := 0;

switch age

 case young

Arden Syntax for Medical Logic Systems

Page 106 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 dose := 10;

 case middle_aged

 dose := 20;

endswitch;

The result of this example are two branches of the MLM execution, where in the first branch dose has the

value 10 and the degree of applicability 0.8 and in the second branch dose has the value 20 and the degree

of applicability 0.2. That is, the execution of the MLM returns two different values with different degrees

of applicability.

10.2.3.2 Switch-Case-Default Statement

This form executes <block1> if the value of <var> equals <expr1> and <block2> if the value is equal to

<expr2>. If none of the both match with the value of <var> then the default block <block3> is executed:

SWITCH <var>

 CASE <expr1>

 <block1>

 CASE <expr2>

 <block2>

 DEFAULT

 <block3>

ENDSWITCH

The following example will set the variable “returnVal” to 7 if the value of the incoming variable “inVal” is

equal to 1, to 9 if the value of the incoming variable “inVal” is equal to 2 and to 0 otherwise.

switch inVal

 case 1

 returnVal := 7;

 case 2

 returnVal := 9;

 default

 returnVal := 0; //error state

endswitch;

Equivalent to the if-then-else statement (see Section 10.2.2.3), the execution of a switch-case-default

statement can split the program execution into several program branches which will be executed in parallel.

This happens if the comparison between the value of a variable and an <expr> evaluates to a truth value

between 0 and 1. If the sum of the applicabilities of all branches is less than 1, the default block is executed

with applicability 1 minus the sum of the applicabilities of the other branches. For example:

age := 16;

young := FUZZY SET (0, truth value 1), (15, truth value 1), (17, truth value
0);

middle_aged := FUZZY SET (15, truth value 0), (20, truth value 1), (60, truth
value 1), (70, truth value 0);

dose := 0;

switch age

 case young

 dose := 10;

 case middle_aged

 dose := 20;

 default

 dose := 15;

endswitch;

The result of this example are three branches of the MLM execution, where in the first branch dose has the

value 10 and the degree of applicability 0.5, in the second branch dose has the value 20 and the degree of

applicability 0.2 and in the third branch dose has the value 15 and the degree of applicability 1- (0.5+0.2) =

0.3. That is, the execution of the MLM returns three different values with different degrees of applicability.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 107

Revision date: 10/4/2023 Print date: 10/4/2023

10.2.3.3 Switch-Case-Aggregate Statement

The aggregate operator in the switch-case-aggregate or switch-case-default-aggregate statement acts

exactly like in the if-then-elseif-aggregate statement. For example:

age := 16;

young := FUZZY SET (0, truth value 1), (15, truth value 1), (17, truth value
0);

middle_aged := FUZZY SET (15, truth value 0), (20, truth value 1), (60, truth
value 1), (70, truth value 0);

dose := 0;

switch age

 case young

 dose := 10;

 case middle_aged

 dose := 20;

 default

 dose := 15;

endswitch aggregate;

The MLM execution branches at the SWITCH statement and the expressions in the CASE branches are

executed in parallel. When execution reaches the ENDSWITCH AGGREGATE statement the aggregated

value of dose is calculated. After the ENDSWITCH AGGREGATE statement dose has the value (0.8*10 +

0.2*20) / (0.8 + 0.2) = 12. The expected output is 12 with the applicability of 1. See Section 10.2.2.4 for

more details.

10.2.4 Conclude Statement

The conclude statement ends execution in the logic slot. If the expression (<expr>) in the conclude

statement is a truth value > 0, the applicabilities of all variables are multiplied by this value, and the action

slot is executed immediately. Otherwise the whole MLM or the current branch of the MLM terminates

immediately. No further execution in the logic slot occurs regardless of the expression. There may be more

than one conclude statement in the logic slot, but only one will be executed in a single run of the MLM. Its

form is:

CONCLUDE <expr>;

The cautions for the if-then statement about null and list (in Section 10.2.1.2) also hold for the conclude

statement.

If no conclude statement is executed, then the logic slot terminates after it executes its last statement, and

the action slot is not executed. In effect, the default is conclude false.

These are valid conclude statements:

CONCLUDE false;

CONCLUDE potas > 5.0;

Furthermore, the reserved word conclude can be used in the action slot to retrieve the degree of

applicability the action slot is executed with.

Applicability_of_action_slot:= conclude;

10.2.5 Call Statement

The call statement permits nesting of MLMs. Given an MLM filename, the MLM can be called directly

with optional parameters and return zero or more results. Given an event definition, all the MLMs that are

normally evoked by that event can be called; the called MLMs can be given optional parameters and

optionally return results. Given an interface definition, the foreign function can be called directly with

optional parameters and return zero or more results. There are two basic forms (the pairs represent

equivalent versions):

Arden Syntax for Medical Logic Systems

Page 108 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<var> := CALL <name>;

LET <var> BE CALL <name>;

<var> := CALL <name> WITH <expr>;

LET <var> BE CALL <name> WITH <expr>;

(<var>, <var>, …) := CALL <name> WITH <expr>;

LET (<var>, <var>, …) BE CALL <name> WITH <expr>;

<var> := CALL <name> WITH <expr>, …, <expr>;

LET <var> BE CALL <name> WITH <expr>, …, <expr>;

(<var>, <var>, …) := CALL <name> WITH <expr>, …, <expr>;

LET (<var>, <var>, …) BE CALL <name> WITH <expr>, …, <expr>;

10.2.5.1 Commas

Because arguments to a call are separated by commas (see argument, Section 11.2.5), and comma is also

an operator (list construction, see Section 9.2.1), there is an apparent ambiguity. This ambiguity is resolved

in favor of comma as a parameter separator. Any argument expression containing the comma operator or

another operator of the same or lower precedence must be enclosed in parentheses. For example,

This call passes three arguments:

x := CALL xxx with (a, b), (c merge d), e + f;

This call passes two arguments:

y := CALL yyy WITH expr1, expr2;

This call appears similar to the one above, but it only passes one argument :

z := CALL zzz WITH (expr3, expr4);

10.2.5.2 <name>

<name> is an identifier that must represent either a valid MLM variable as defined by the MLM statement

in the data slot (see Section 11.2.4), a valid event variable as defined by the event statement in the data slot

(see Section 11.2.3), a valid interface variable as defined by the interface statement in the data slot (see

Section 11.2.16), or an MLM, event, or interface variable defined through the use of an include statement

(Section 11.2.20).

10.2.5.3 <exprs>

<expr>s are optional parameters, which may be of any type, including list and null. Primary times

associated with the parameter are maintained.

10.2.5.4 <var>

<var> is an identifier that represents the local variable that will be assigned the result.

10.2.5.5 MLM Call

If <name> is an MLM variable, then when the call statement is executed, the main MLM (that is, the one

issuing the call) is interrupted, and the named MLM is called. If the called MLM has argument

statement(s) in its data slot (see Section 11.2.5), then the values of the <expr>s are assigned. If a called

MLM’s argument statement has more variables (parameters) than sent by the call statement, then null is

assigned to the extra variable(s). If the call statement passes more variables (parameters) than the called

MLM is expecting, the additional parameters are silently dropped. The called MLM is executed, and when

it terminates, execution of the main MLM resumes. If the called MLM concludes true and there is a return

statement in the called MLM’s action slot (see Section 13.2.2), then the value of its expression is assigned

to <var>. If the return statement has more values than the calling MLM can accept, then the extra return

values are silently dropped. If the return statement has fewer values than the calling MLM is expecting,

then the extra return values are null. If there is no return statement, or if the called MLM concludes false,

then null is assigned to <var>. Examples:

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 109

Revision date: 10/4/2023 Print date: 10/4/2023

var1 := CALL my_mlm1 WITH param1, param2;

(var2, var3, var4) := CALL my_mlm2 WITH param1, param2;

10.2.5.6 Event Call

If <name> is an event variable, then execution is similar. The main MLM is interrupted, and all the MLMs

whose evoke slots refer to the named event are executed (see Section 14). They each receive the parameters

if there are any via their argument statement(s). The results of all called MLM’s return statements are

concatenated together into a list; called MLMs with no return statement and called MLMs that return a

single null are not included in the result. The order of the returned values is implementation dependent. The

result is assigned to <var>, and execution continues. <var> will always be a list, even if it has one item.

Example:

var1 := CALL my_event WITH param1, param2;

10.2.5.7 Interface Call

If <name> is an interface variable, then when the call statement is executed, the MLM (that is, the one

issuing the call) is interrupted, and the named interface is called. If the called interface functions accept

variables (parameters), then the values of the <expr>s are assigned. If a called interface’s function expects

more variables (parameters) than sent by the call statement, then null is assigned to the extra variable(s).

The called function is executed, and when it finishes, execution of the MLM resumes. If the called function

returns one or more values, then the values are assigned to the <var>s. If the function returns more values

than the calling MLM can accept, then the extra return values are silently dropped. If the interface function

returns fewer values than the calling MLM is expecting, then the extra values are null. If the function does

not return any values, then null is assigned to <var>. Examples:

var1 := CALL my_interface_function1 WITH param1, param2;

(var1, var2, var3) := CALL my_interface_function2 WITH param1, param2;

10.2.5.8 Example: Call Statement

Here is a valid call statement:

/* Define find_allergies MLM */

find_allergies := MLM 'find_allergies';

/* Lists two medications and their allergens */

med_orders:= ("PEN-G", "aspirin");

med_allergens := ("penicillin", "aspirin");

/* Lists three patient allergies and their reactions */

patient_allergies := ("milk", "codeine", "penicillin");

patient_reactions := ("hives", NULL, "anaphylaxis");

/* Passes 4 arguments and receives 3 lists as values */

(meds, allergens, reactions) := call find_allergies with med_orders,

 med_allergens,

 patient_allergies,

 patient_reactions;

10.2.5.9 Example: Interface Statement

Here is a valid interface statement:

/* Define find_allergies external function*/

find_allergies := INTERFACE
{\\RuleServer\AllergyRules\my_institution\find_allergies.exe};

/* Lists two medications and their allergens */

med_orders := ("PEN-G", "aspirin");

med_allergens := ("penicillin", "aspirin");

/* Lists three patient allergies and their reactions */

patient_allergies := ("milk", "codeine", "penicillin");

patient_reactions := ("hives", NULL, "anaphylaxis");

/* Passes 4 arguments and receives 3 lists as values */

Arden Syntax for Medical Logic Systems

Page 110 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

(meds, allergens, reactions) := call find_allergies with med_orders,

 med_allergens,

 patient_allergies,

 patient_reactions;

10.2.5.10 Enhanced Assignment in Call Statement

The call statement also supports the same enhanced assignment syntax described in the assignment

statement (Section 10.2.1.2)

10.2.6 While Loop

A simple form of looping is provided by the while loop. Its form is:

WHILE <expr> DO

<block>

ENDDO;

The while loop tests whether an expression (<expr>) is equal to a single Boolean true (similar to the

conditional execution introduced in the if ... then syntax - see Section 10.2.1.2). If it is, the block of

statements (<block>) is executed repeatedly until <expr> is not true. If <expr> is not true, the block is

not executed.

Authors should take care when using while loops in MLMs, since it is possible to create infinite loops. It is

the author’s responsibility, not the compiler, to avoid infinite looping.

Here is an example:

/* Initialize variables */

a_list:= ();

m_list:= ();

r_list:= ();

num:= 1;

/* Checks each allergen in the medications to determine if the patient is
allergic to it */

while num <= (count med_allergen) do

 allergen:= last(first num from med_allergens);

 allergy_found:= (patient_allergies = allergen);

 reaction:= patient_reactions where allergy_found;

 medication:= med_orders where (med_allergens = allergen);

 /* Adds the allergen, medication, and reaction to variables that will */

 /* be returned to the calling MLM */

 If any allergy_found then

 a_list:= a_list, allergen;

 m_list:= m_list, medication;

 r_list:= r_list, reaction;

 endif;

 /* Increments the counter that is used to stop the while-loop */

 num:= num + 1 ;

enddo;

10.2.6.1 Breakloop Statement

The block of statements (<block>) of a while loop may contain a breakloop statement. If the execution

reaches such a breakloop statement, the direct superior loop will be aborted immediately. If the breakloop

statement occurs within a nested loop, it will always apply to the innermost loop only. Breakloop

statements are only allowed inside of loops.

An example is:

num:= 1;

/* Checks each allergen in the medications and stops if patient is allergic
to it */

while num <= (count med_allergen) do

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 111

Revision date: 10/4/2023 Print date: 10/4/2023

 allergen:= last(first num from med_allergens);

 allergy_found:= (patient_allergies = allergen);

 /* be returned to the calling MLM */

 If any allergy_found then

 breakloop; // execution of the while-loop will stop immediately

 endif;

 /* Increments the counter that is used to stop the while-loop */

 num:= num + 1 ;

 [...]

enddo;

10.2.7 For Loop

Another form of looping is provided by the for loop. Its form is:

FOR <identifier> in <expr> DO

<block>

ENDDO;

The <expr> will usually be a list generator. If <expr> is empty or null, the block is not executed.

Otherwise, the block is executed with the <identifier> taking on consecutive elements in <expr>. The

<identifier> cannot be assigned to inside the <block> (the compiler must produce a compilation error if

this is attempted). After the enddo, the <identifier> becomes undefined and its value should not be used. A

compiler may flag this as an error.

Here is an example:

/* Initialize variables */

a_list:= ();

m_list:= ();

r_list:= ();

/* Checks each allergen in the medications to determine if the patient is

allergic to it */

for allergen in med_allergens do

allergy_found:= (patient_allergies = allergen);

reaction:= patient_reactions where allergy_found;

medication:= med_orders where (med_allergens = allergen);

/* Adds the allergen, medication, and reaction to variables that will */

/* be returned to the calling MLM */

If any allergy_found then

a_list:= a_list, allergen;

m_list:= m_list, medication;

r_list:= r_list, reaction;

endif;

enddo;

Here is an example using a set number of iterations:

for i in (1 seqto 10) do

…

enddo;

10.2.7.1 Breakloop Statement

The breakloop statement, defined in Section 10.2.6.1, is also permitted in the <block> of the for loop.

When a breakloop statement is executed, the <identifier> becomes undefined and its value should not be

used.

10.2.8 New Statement

The new statement causes a new object to be created, and assigns it to the named variable.

<var> := NEW <object-identifier>

<var> := NEW <object-identifier> WITH <expr 1>, <expr 2>, <expr n>

Arden Syntax for Medical Logic Systems

Page 112 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

LET <var> BE NEW <object-identifier>

LET <var> BE NEW <object-identifier> WITH <expr 1>, <expr 2>, <expr n>

<object-identifier> is a name which represents an object type declared previously by an object or

linguistic variable declaration (see Section 11.2.17, 11.2.18).

MedicationDose := OBJECT [Medication, Dose, Status];

dose := NEW MedicationDose with "Ampicillin", "500mg", "Active";

In the simple case (without the with clause) all attributes of the object are initialized to null. In the full

statement, a set of 1 or more comma-separated expressions should follow the with reserved word. Each

expression is evaluated and assigned as a value of an attribute of the object. They are assigned in the order

the attributes were declared in the object statement. If the number of expressions is less than the number of

attributes, remaining attributes are initialized to null. If the number of expressions is greater than the

number of attributes, the extra expressions are evaluated but the results are silently discarded.

As with a call statement, commas between expressions will be considered as separating successive attribute

initializer expressions rather than as defining a list. If you want to initialize an attribute with a list you need

to enclose the list in parentheses. See Section 10.2.5.1 for detailed information.

dose := NEW MedicationDose with "Ampicillin", ("500", "700"), "Active";

10.2.8.1 New Statement with Named Initializer

There are times when the MLM author may wish to initialize one or more fields explicitly, not necessarily

in the order they are declared. It is desirable to have an easy way to initialize certain fields (attributes)

directly by name. Allowing field initialization by name is clearer in the MLM code, especially when the

object has a large number of fields.

my_var := NEW <object-type>

 { WITH <expr_1>, <expr_2>, ..., <expr_n> }

 { WITH [attribute_1 := <expr_1>, attribute_2 := <expr_2>, ...,

 attribute_3 := <expr_3>] }

The first WITH clause is optional, and allows one or more Arden expressions to be specified. They will get

evaluated in order and initialize attributes of the object beginning with the first field specified in the

OBJECT declaration.

The second WITH clause is also optional, and uses the square braces [,] to distinguish itself from the

ordered parameters of the first WITH clause. The attribute_1,... should be declared names of object

attributes. The attribute names may occur in any order, and allow the MLM author to indicate that one or

more attributes should be set following the ordered attribute initialization (the first WITH clause). In many

cases this may be clearer and more succinct, such as when you wish to set one of the last fields in the

attribute list and allow previous fields to have default (null) values.

Note that although both WITH clauses are optional, if they both occur, the ordered attribute list must

precede the named initializer list. The named initializer list will also take precedence in the case that an

attribute gets initialized in both the ordered list and the named list.

Example:

 obj_def := object [x, y, z];
 testobj := NEW obj_def with [z:=10, y:="roger"];

10.3 Logic Slot Usage

The general approach in the logic slot is to use the operators and expressions to manipulate the patient data

obtained in the data slot in order to test for some condition in the patient. Once sufficient data, positive or

negative, has been amassed the conclude statement is executed. If there is no conclude statement in the

logic slot, then it will never conclude true, and the action slot will never be executed. Some logic slots are

simple (for example, test whether the serum potassium is greater than 5.0), and some are complex (for

example, calculate a diagnosis score).

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 113

Revision date: 10/4/2023 Print date: 10/4/2023

11 DATA SLOT

11.1 Purpose

The purpose of the data slot is to define local variables used in the rest of the MLM. The goal is to isolate

institution-specific portions to one slot. Within the data slot, the institution-specific portions are placed in

mapping clauses (see Section 7.1.18) so that the institution-specific part does not interfere with the MLM

syntax. To simplify maintenance, it is recommended that, in the absence of conditional assignments,

include, object, mlm, interface, and event statements appear before read statements within the data slot.

11.2 Data Slot Statements

The following variables cannot be re-assigned in the logic slot after they have been assigned in the data

slot: event (Section 11.2.3), mlm (Section 11.2.4), interface (Section 11.2.16), and object (Section

11.2.17). Once defined in the data slot, they should not change.

11.2.1 Read Statement

The main source of data is the patient database. Using the Mapping Clause, each institution can design its

own queries based on the local query language; databases may be hierarchical, relational, object-oriented,

etc. The vocabulary used to represent entities in the database will vary from institution to institution. (No

attempt was made to select a standard vocabulary in this version of this specification.) The read statement

is designed to isolate those parts of a database query that are specific to an institution from those parts that

are universal.

There is no restriction that a read statement must derive its input from the patient database. A read

statement might access a medical dictionary, for example; or it might interactively request information from

somebody (and, if the compiler does on-demand optimization, the interaction might happen only if needed).

How this is done is implementation defined.

The database query itself is divided into three parts: the aggregation or transformation operator, the time

constraint, and the rest of the query. For backward compatibility, parentheses may be placed around the

<mapping> where <constraint> part. The general form of the read statement is (there are two equivalent

versions):

<var> := READ <aggregation> <mapping> WHERE <constraint>;

LET <var> BE READ <aggregation> <mapping> WHERE <constraint>;

11.2.1.1 Definitions

<var> is a variable that is assigned the result of the query.

<aggregation> is an aggregation operator (see Section 9.12) or a transformation operator (see Section

9.14), which is applied after the query constraints. If <aggregation> is omitted, then all the data that satisfy

the constraints are returned. Only the following aggregation and transformation operators are permitted:

exist

sum

average

avg

minimum

min

maximum

max

last

first

earliest

latest

minimum ... from

min ... from

Arden Syntax for Medical Logic Systems

Page 114 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

max ... from

maximum ... from

last ... from

first ... from

earliest ... from

latest ... from

In the default sort ordering, first and last are equivalent to earliest and latest.

<constraint> is any Simple-, Is- or Occur-comparison operator (see Sections 9.4, 9.5, 9.6 and 9.7) with it

(or they) as the left argument, or a combination of those chained with any logical operator (AND, OR,

NOT within Section 9.4). In this case it refers to the body of the query. The comparison operator specifies

the constraint in value, type or time for the query result. If <constraint> is omitted, then there are no

constraints. Recognising the traditional restriction on occur comparison operators, valid examples for those

are:

they occurred within the past 3 days

it occurred before the time of surgery

A constraint can also be constructed from the classic set of simple and is comparison operators, again with

the keyword it or they to refer to the queries body. Valid examples for those are;

it = 3.5

it is not equal “Some Value”

it is within past 3 days

it is not Null

Chaining such comparison operators using logical operators allows for complex constraints. As before, the

entire constraint must evaluate true if the entry from the query body should be part of the query result:

it < 3.5 AND it > 0.0

it is not Null AND it occurred within past 5 days

it > 90 OR it is not 0 AND it occurred within past 10 minutes

<mapping> is a valid mapping clause (see Section 7.1.18), which contains the institution-specific part of

the query enclosed in curly brackets. It contains any vocabulary terms and any query syntax that is

necessary in the institution to perform a query, except that the aggregation and time constraints are missing.

<mapping> is required.

FHIR queries, to replace the institution specific <mapping> clause with a fully Arden compliant query, can

only be constructed on top of READ AS statements. For more information see Sections 11.2.2 and 0.

11.2.1.2 Examples

These are valid read statements (the portions within curly brackets are arbitrary):

var1 := READ {select potassium from results where specimen = `serum`};

var1 := READ last {select potassium from results};

LET var1 BE READ {select potassium from results} WHERE it occurred within the
past 1 week;

var1 := READ first 3 from {select potassium from results} WHERE it occurred
within the past 1 week;

LET var1 BE READ {select potassium from results} WHERE it >= 3.4 AND it
occurred within the past 1 week;

11.2.1.3 Effect

The effect of the read statement is to execute a query, mapping the data in the patient database to a variable

that can be used elsewhere in the MLM. The execution of the read statement will be institution-specific.

The time constraints must be added to whatever other constraints are within the mapping clause, and the

aggregation or transformation operator must also be added to complete the query.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 115

Revision date: 10/4/2023 Print date: 10/4/2023

11.2.1.4 Result Type

The result of a query includes the primary time for each item that is returned (see Section 8.9). If

<aggregation> is an aggregation operator, then the query returns a single item. If <aggregation> is a

transformation operator or it is absent, then the query returns a list. Thus even if the query requests an

entity that is usually singular, such as the birthdate of the patient, a list is assumed unless an aggregation

operator is applied (but the list might contain only a single value, in which case it would be

indistinguishable from a scalar). The reason for this is that a patient database may have multiple values for

a birthdate; it may be that the last one is assumed to be correct. For example,

birthdate := READ last {select birthdate from demographics};

11.2.1.5 Multiple Variables

A query may return more than one result at a time. This is useful for batteries of tests in order to keep the

corresponding tests within one blood sample coordinated. The two versions are equivalent (the parentheses

around the where are optional):

(<var>, <var>, ...) := READ <aggregation> <mapping> WHERE <constraint>;

LET (<var>, <var>, ...) BE READ <aggregation> (<mapping> WHERE <constraint>);

This is the only situation where a “list of lists” is allowed. The where constraint (if any) is applied

separately to each of the resulting lists. Queries must always return the same number of elements, with the

same primary times.

There may be one or more <var> within the parentheses. <aggregation>, <constraint>, and <mapping>

are defined as above. The fact that multiple entities are being queried at once is represented in the

institution-specific part, <mapping>. The <aggregation> and <constraint> are performed separately on

the individual variables; it is institution-defined whether the <mapping> returns all the values with

matching primary times. For example,

/* in this example three anion gaps are calculated */

(Na, Cl, HCO3) := read last 3 from {select sodium, chloride, bicarb from
electro};

anion_gap := Na - (Cl + HCO3);

The order in which read mappings are evaluated is undefined, except that an implementation must

guarantee that a read mapping is evaluated before the first time that its value is needed. An implementation

may optimize code to avoid executing a read mapping, even if the read mapping has side effects.

11.2.2 Read As Statement

The read as statement is very similar to the read statement (Section 11.2.1). However, rather than returning

query results as a set of lists, where each list represents a collection of values for a particular query field (or

column), it returns a single list of objects, each of which consist of named attributes (fields) and values. The

attribute names are specified in the object declaration, which should have been declared previously (see

Section 11.2.17).

<var> := READ AS <object-type> <aggregation> <mapping> WHERE <constraint>;

LET <var> BE READ AS <object-type> <aggregation> <mapping> WHERE
<constraint>;

<object-type> is a name which represents an object type declared previously by an object declaration (see

Section 11.2.17).

MedicationDose := object [Medication, Dose, Status];

med_doses := read as MedicationDose

 {select med, dosage, status from client where status != "inactive"};

It is often easier to manipulate data in this format, because it allows associated values to stay together when

lists of data are appended or otherwise manipulated.

Arden Syntax for Medical Logic Systems

Page 116 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

It is up to the MLM author to assure that the implementation-specific contents of the curly braces produces

the values to be assigned to attributes, and in the correct order.

The following example shows two ways to retrieve three anion gap values, first using read and then using

read as. Note that the text of the implementation-dependent section (curly braces) did not need to change in

this example, although of course this standard does not specify anything about this section. The point here

is that the same data is retrieved in each case, but it is just returned in a different form.

/* in this example the data to calculate three anion gaps are retrieved */

(Na, Cl, HCO3) := read last 3 from {select sodium, chloride, bicarb from
electro};

/* using READ AS */

AnionGap := Object [Na, Cl, HCO3];

gaps := read as AnionGap last 3 from {select sodium, chloride, bicarb from
electro};

11.2.2.1 Read As FHIR Object type

A special case of the READ AS statement achieved by reading a FHIR object type, which is used to

describe an Arden native FHIR query targeting a FHIR repository (see section 0). By defining the

<mapping> to be a pre-defined FHIR object the <object-type> field is known to be the same object, thereby

the curly braces usually put as mapping are not required.

<var> := READ AS <aggregation> <FHIR-mapping> WHERE <constraint>;The same rules for constraints

and aggregations apply in a FHIR Read As statement, only the <object-type> field must not be defined and

the <FHIR-mapping> field can only be one of the in section 12.2.1 defined objects supported. These FHIR

specific objects do not need to be explicitly defined in the Data Slot, as they are defined within Arden.

fhir_observations := READ AS Observation;

fhir_latest_observations := READ AS latest Observation;

fhir_observation_timeframe := READ AS Observation WHERE it occurs within 3
days;

Whenever a FHIR Coding is included in the queries WHERE clause, additionally to the classic String

comparison operators the CodeSystem can be compared to a Valueset (see Section 9.6.14). Arden Valueset

here is another pre-defined object type, meant to hold the URI resolvable information used to retrieve a

valueset of logically grouped codes in the network. That resolveable URI is in FHIR approved format (for

any further details on Valueset in Arden-FHIR see Section 12.5.1).

exam_valueset := NEW Valueset WITH
[system:=“https://fhir.loinc.org/ValueSet”, code:= “LL1162-8”];

fhir_observations := READ AS Observation WHERE
fhir_observations.code.coding.code IS IN exam_valueset;

11.2.3 Event Statement

The event statement assigns an institution-specific event definition to a variable. An event can be an

insertion or update in the patient database, or any other medically relevant occurrence. The variable is

currently used in the evoke slot (see Section 14), as part of the call statement to call other MLMs (see

Section 10.2.5), and as a Boolean value in a logic or action slot. There are two equivalent versions:

<var> := EVENT <mapping>;

LET <var> BE EVENT <mapping>;

11.2.3.1 Definitions

 <var> is a variable that represents the event to be defined. It can only be used in the evoke slot or as part

of a call statement.

<mapping> is a valid mapping clause (see Section 7.1.18) which contains the institution-specific event

definition. How the event is defined and used is up to the institution.

The variable that represents the event can be treated like a Boolean in the logic or action slots. The Boolean

value of the variable is false until the MLM is called by the referred event.

https://www.hl7.org/fhir/R4B/datatypes.html#Coding

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 117

Revision date: 10/4/2023 Print date: 10/4/2023

The time operator (see Section 9.17) can be applied to an event variable. It yields the clinically relevant

time of the event. This may be different from the eventtime variable, which refers to the time that the event

was recorded in the database (see Section 8.4.4).

The order in which event mappings are evaluated is undefined, except that an implementation must

guarantee that an event mapping is evaluated before the first time that its value is needed.

11.2.3.2 Example

event1 := EVENT {storage of serum potassium};

11.2.4 MLM Statement

The MLM statement assigns a valid mlmname to a variable. That variable is currently used only as part of

the call statement to call another MLM, as defined in Section 10.2.5. There are two basic forms (the pairs

represent equivalent versions):

<var> := MLM <term>;

LET <var> BE MLM <term>;

<var> := MLM <term> FROM INSTITUTION <string>;

LET <var> BE MLM <term> FROM INSTITUTION <string>;

11.2.4.1 Examples

LET MLM1 BE MLM 'my_mlm1';

mlm2 := MLM 'my_mlm2.mlm' FROM INSTITUTION "my institution";

11.2.4.2 Definitions

<var> is a variable that represents the MLM to be called. It can only be used as part of a call statement.

<term> is a valid constant term as defined in Section 7.1.17. It is the mlmname of the MLM to be called.

mlm_self (case insensitive) is a special constant that represents the name of the current MLM.

<string> is a valid constant string as defined in Section 7.1.13. If specified, it is the institution name found

in the institution slot of the MLM to be called.

If the institution is specified, then a unique MLM is found using the institution name, the mlmname, and

the latest version number. If the institution is not specified, then a unique MLM is found using the same

institution as the main (calling) MLM, the mlmname, the MLM’s validation, and the latest version number.

Although the exact form of the version is institution-specific, within an institution it is possible to

determine the latest version of an MLM (see Section 6.1.4).

11.2.4.3 Examples

mlm1 := MLM 'mlm_to_be_called';

mlm2 := MLM 'diagnosis_score' FROM INSTITUTION "LDS Hospital";

11.2.5 Argument Statement

The argument statement is used by an MLM that is called by another MLM, as defined in Section 10.2.5.

If the main MLM passes parameters to the called MLM, then the called MLM retrieves the parameters via

the argument statement. The argument statements access the corresponding passed arguments. Thus, the

first variable <var1> refers to the first passed argument, the second variable <var2>to the second argument,

etc.

If there is a mismatch of variables where the number of variables is greater than the number of arguments

passed from the CALL, null is assigned to the extra left-hand-side variable(s). If the MLM is evoked

instead of called, all the arguments are treated as null (just like any other uninitialized variable).

There are two basic forms (the pairs represent equivalent version). One receives a single parameter, and the

other receives multiple parameters:

<var> := ARGUMENT;

LET <var> BE ARGUMENT;

Arden Syntax for Medical Logic Systems

Page 118 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

(<var1>, <var2>, …) := ARGUMENT;

LET (<var1>, <var2>, …) BE ARGUMENT;

<var> is a variable that is assigned whatever expression followed with in the main MLM’s call statement.

If there was no such expression, or if the MLM was not called by another MLM, then null is assigned.

11.2.5.1 Example

In the calling MLM:

var1 := CALL my_mlm WITH param1, (item1, item2);

In the called MLM, named "my_mlm":

(arg1, list1) := ARGUMENT;

11.2.6 Message Statement

The message statement assigns an institution-specific message (for example, an alert) to a variable. It

allows an institution to write coded messages in the patient database (see Section 13.2). There are two

equivalent versions:

<var> := MESSAGE <mapping>;

LET <var> BE MESSAGE <mapping>;

<var> is a variable that represents the message to be defined. It can only be used in a write statement.

<mapping> is a valid mapping clause (see Section 7.1.18), which contains the message definition. How the

message is defined and used is up to the institution.

11.2.6.1 Example

message1 := MESSAGE {pneumonia~23 45 65};

11.2.7 Message As Statement

The message as statement is very similar to the message statement (Section 11.2.6). However, rather than

returning a variable, it returns a single object, which consists of named attributes (fields) and values. The

attribute names are specified in the object statement, which should have occurred previously in the MLM

(see Section 11.2.17). If the mapping clause is empty, it may be omitted in this statement. However, it is up

to the implementation if a non-empty mapping clause is allowed.

<var> := MESSAGE AS <object-type> <mapping>;

<var> := MESSAGE AS <object-type>;

LET <var> BE MESSAGE AS <object-type> <mapping>;

LET <var> BE MESSAGE AS <object-type>;

<object-type> is a name which represents an object type declared previously by an object statement (see

Section 11.2.17).

11.2.7.1 Example

message_obj := OBJECT [subject, text];

high_PTT_msg := MESSAGE AS message_obj {Elevated PTT};

def_msg := MESSAGE AS message_obj; // default mapping clause

11.2.8 Destination Statement

The destination statement assigns an institution-specific destination to a variable. It allows one to write a

message to an institution-specific destination (see Section 13.2.1). There are two equivalent versions:

<var> := DESTINATION <mapping>;

LET <var> BE DESTINATION <mapping>;

<var> is a variable that represents the destination to be defined. It can only be used in a write statement.

<mapping> is a valid mapping clause (see Section 7.1.18) that represents an institution-specific

destination. How the destination is defined and used is up to the institution.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 119

Revision date: 10/4/2023 Print date: 10/4/2023

11.2.8.1 Example

In this example, the destination is an electronic mail address:

destination1 := DESTINATION {email: user@cuasdf.bitnet};

destination2 := DESTINATION {attending_physician(Pt_id)};

destination3 := DESTINATION {"primary physician email"};

11.2.9 Destination As Statement

The destination as statement is very similar to the destination statement (Section 11.2.8.1). However,

rather than returning a variable, it returns a single object, which consists of named attributes (fields) and

values. The attribute names are specified in the object statement, which should have occurred previously in

the MLM (see Section 11.2.17). If the mapping clause is empty, it may be omitted in this statement.

However, it is up to the implementation if a non-empty mapping clause is allowed.

<var> := DESTINATION AS <object-type> <mapping>;

<var> := DESTINATION AS <object-type>;

LET <var> BE DESTINATION AS <object-type> <mapping>;

LET <var> BE DESTINATION AS <object-type>;

<object-type> is a name which represents an object type declared previously by an object statement (see

Section 11.2.17).

It is up to the MLM author to assure that the implementation-specific contents of the mapping produces the

values to be assigned to attributes, and in the correct order.

11.2.9.1 Example

dest_obj := object [dest_method, recip_name, recip_address];

email_attending := DESTINATION AS dest_obj {Attending Phys Email};

def_destination := DESTINATION AS dest_obj;

11.2.10 Assignment Statement

The assignment statement, defined in Section 10.2.1, is also permitted in the data slot.

11.2.11 If-Then Statement

The if-then statement, defined in Section 10.2.1.2, is also permitted in the data slot.

11.2.12 Switch-Case Statement

The switch-case statement, defined in Section 10.2.3, is also permitted in the data slot.

11.2.13 Call Statement

The call statement, defined in Section 10.2.5, is also permitted in the data slot.

11.2.14 While Loop

The while loop (with an optional breakloop statement), defined in Section 10.2.6, is also permitted in the

data slot.

11.2.15 For Loop

The for loop (with an optional breakloop statement), defined in Section 10.2.7, is also permitted in the

data slot.

11.2.16 Interface Statement

The interface statement assigns an institution-specific foreign function interface definition to a variable.

The interface statement permits specification of a foreign function, i.e., a function written in another

programming language. Sometimes medical logic requires information not directly available from the

Arden Syntax for Medical Logic Systems

Page 120 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

database (via read statements). It may be desirable to call operating system functions or libraries obtained

from other vendors. A foreign function, when specified, can then be called with the call statement (see

Section 10.2.5). Curly braces ({}) are used to specify the foreign function. The specification within the

curly braces is implementation specific. There are two equivalent versions:

<var> := INTERFACE <mapping>;

LET <var> BE INTERFACE <mapping>;

<var> is a variable that represents the interface to be defined. It can only be used as part of a call statement.

<mapping> is a valid mapping clause (see Section 7.1.18) which contains the institution-specific event

definition. How the function interface is defined and used is up to the institution.

11.2.16.1 Example

data:

/* Declares the third-party drug-drug interaction function */

/* The implementation within the {}-braces shows that a string (char*)
will be returned */

/* when the third-party API (ThirdPartyAPI) is used to call */

/* the drug-drug interaction function (DrugDrugInteraction) */

/* The function expects that two medicaion strings (char*, char*) will be
passed */

func_drugint := INTERFACE {

char* ThirdPartyAPI:DrugDrugInteraction (char*, char*)

};

;;

evoke:

;;

logic:

/* Calls the drug-drug interaction function */

alert_text := call func_drugint with "terfenadine", "erythromycin";

11.2.17 Object Statement

The object statement assigns object declaration to a variable. This variable should not be reassigned in

another statement, and the variable name becomes the object type name (as used in a read as statement

(Section 11.2.2) or new statement (Section 10.2.8). The object statement permits specification of the

attributes and attribute ordering of an object type.

<var> := OBJECT "[" <attribute-name-1>, <attribute-name-2> ... "]";

LET <var> BE OBJECT "[" <attribute-name-1>, <attribute-name-2> ... "]";

MedicationDose := OBJECT [Medication, Dose, Status];

Object attributes follow the same rules as variable names regarding allowed characters. As with variable

names, character case is not significant.

11.2.18 Linguistic Variable Statement

Linguistic variables are used to use fuzzy sets in conjunction with other fuzzy sets in order to define a

subset of a value range. Assume a value, stored in the variable parameter, out of an arbitrary interval W.

Furthermore, assume three fuzzy sets u1, u2, and u3 over W representing the ranges “low”, “middle”, and

“high”. In such a case, it is necessary to save these three fuzzy sets together in a single variable of the type

object whose fields are named according to the ranges, such as:

Range := object [low, middle, high];

Value := new Range;

Value.low := /definition of the fuzzy set u1 /;

Value.middle := /definition of the fuzzy set u2 /;

Value.high := /definition of the fuzzy set u3 /;

Whenever a parameter has a low, medium, or high value, it can be evaluated by the following expressions,

which provide three truth values, whose sum is truth value 1.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 121

Revision date: 10/4/2023 Print date: 10/4/2023

Parameter = Value.low;

Parameter = Value.middle;

Parameter = Value.high;

To clarify the significance of the fuzzy sets, the keyword linguistic variable is used for object declarations

where all components are fuzzy data types.

RangeOfAge := linguistic variable [young, middleAge, old];

Age := new RangeOfAge;

Age.young := FUZZY SET (0 years, truth value 1), (25 year, truth value 1),
(35 years, truth value 0);

Age.middleAge := FUZZY SET(25 years, truth value 0), (35 years, truth value
truth value 1), (55 years, truth value 1), (65 years, truth value 0);

Age.old := FUZZY SET (55 years, truth value 0), (65 years, truth value 1);

Now, if the variable myAge is interpreted as the age of a person, myAge is Age.young returns a truth value

that indicates the degree to which the statement “is the person young” is justified.

11.2.19 New Statement

The new statement, defined in Section 10.2.8, is also permitted in the data slot.

11.2.20 Include Statement

The include statement is analogous to the include statement in C-based languages in that indicates an

external MLM may be consulted for object, MLM, event, interface variable and resource definitions. The

include statement references a variable previously assigned in an MLM statement (Section 11.2.4). When

object definitions or resource definitions occur in both the local MLM and a remote MLM, the definition in

the local scope always takes precedence. If two remote MLMs define objects or resource definitions with

the same name or key, the definitions in MLMs referred to later in the local MLM take precedence. The

basic form of the statement is

INCLUDE <var>;

11.2.20.1 Example

mlm2 := MLM 'my_mlm2.mlm' FROM INSTITUTION "my institution";

INCLUDE mlm2;

11.3 Data Slot Usage

The data slot is used to map institution-specific entities to variables used locally in the MLM. Keeping the

mappings in one slot facilitates modifying an MLM for use in another institution.

Although the data slot can perform assignment statements and if-then statements like the logic slot, it is

recommended that most of the logic be left in the logic slot. For example, it would be possible to write an

MLM with all its mappings and health logic in the data slot, leaving only a simple conclude statement in

the logic slot; but this defeats the purpose of separating the data slot and the logic slot. Assignment

statements and if-then statements should be used in the data slot only where necessary to support database

queries (for example, to calculate a time constraint or to handle details of database semantics, such as

handling missing data).

Arden Syntax for Medical Logic Systems

Page 122 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

12 FHIR-ENABLED DATA ACCESS

12.1 Introduction

Portability of MLMs has been a challenge since their inception. The use of the { and } characters (known

as the curly braces) to encapsulate local calls to an electronic patient data repository has meant that a

significant part of each MLM would need to be rewritten when porting the logic to a site served by a

different electronic health record (EHR). The Fast Healthcare Interoperability Resources (FHIR) standard

has been designed to support the creation of applications that can be shared across EHRs without rebuilding

the queries needed to collect and to store data objects. They provide an alternative to the curly braces for

accessing and managing data objects.

In order to maintain backwards compatibility, the curly braces will continue to be supported. Arden,

version 3.0 provides a syntax for incorporating data access based on FHIR within the Data Slot in Arden.

The functionality supported will be that consistent with 1) the role of Arden as a tool for expressing

medical decisions focused on the needs of individual patients, 2) the data access capabilities available in the

normative, 4.3.0, release of FHIR. As more FHIR capabilities become normative, appropriate syntax and

examples will be provided.

12.2 Supported FHIR Resources

Based on FHIR release 4.3.0 (see https://hl7.org/fhir/R4B) Arden supports a limited number of resources,

notably those that reflect the types of data historically found in Arden MLMs. A preference is to support

normative HL7 specifications, but exceptions are made for data types that appear in MLMs frequently.

While the Arden extensions described here reflect the current state of FHIR resources, syntax is provided

to support access to collections of FHIR profiles that may be used to extend the basic FHIR resources for

specialized or local use-cases. The HL7 FHIR standard is still in active development and therefore some

resources required by Arden have not reached normative status. The associated Arden Syntax may change

in future versions of this document.

Arden’s approach to accessing data through an initial set of FHIR resources is discussed below. Note that

Arden assumes that the decision targeted by an MLM is provided for a single, identified patient and that

each MLM is aware of the “primary time” of each data element/object that is queried. The default patient

link and primary time fields for the FHIR resources reviewed here are provided in the table below.

Resource FHIR Version Maturity Level Patient link Primary time

Patient 4.3.0 - R4B normative patient.identifier patient.meta.lastUpdated

Observation 4.3.0 - R4B normative observation.subject observation.effectiveDateTime

Condition 4.3.0 - R4B Trial use condition.subject condition.onsetDateTime

Encounter 4.3.0 - R4B Trial use encounter.subject encounter.period.start

12.2.1 Arden-FHIR Objects

Each of the FHIR resources supported by Arden (either from this standard or specialized implementations)

must correspond to a pre-defined Arden Object. The object must contain all fields as stated by its FHIR

documentation, and the field type will generally (e.g., by READ AS statements) be mapped to the closest

Arden data type (<Number>, <Time>, <Boolean> or in any other case <String>). This pre-defined object

must be available to each MLM’s data slot without being explicitly defined. These objects do serve as

standardized data model for FHIR resources in Arden and further identify any FHIR-specific action (e.g., a

FHIR read statement must have a FHIR object as mapping type, if it doesn’t, the statement shall be

interpreted as an ordinary curly-braces read statement).

https://hl7.org/fhir/R4B
https://www.hl7.org/fhir/R4B/patient.html
https://www.hl7.org/fhir/R4B/observation.html
https://www.hl7.org/fhir/R4B/condition.html
https://www.hl7.org/fhir/R4B/encounter.html

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 123

Revision date: 10/4/2023 Print date: 10/4/2023

12.3 Patient-Oriented

The focus of the Arden Syntax is the delivery of suggested clinical decisions for individual patients.

Therefore, all FHIR API calls will be restricted by the resource’s Patient link (Patient compartment in

FHIR REST calls). To support this, Arden contains a predefined object that will represent the default

patient used to trigger the MLM. This object is an abbreviated copy of the FHIR Patient resource and will

contain core patient information including the patient’s ID (Patient.Identifier), the patient’s status

(Patient.active) the patient’s date of birth (Patient.birthdate), and the patient’s gender (Patient.gender).

The Patient data object is provided in the Arden execution environment and automatically available to the

logic in an MLM.

A patient can be identified, and the default Patient information can be instantiated in one of two ways.

When one or more MLMs are called directly by a process, the process will provide the required Patient

data object to the execution engine. Its attributes will be instantiated as a part of the calling process. When

an MLM is invoked through the data-drive mechanism, the executing environment will use patient

identifiers associated with the invoking data element to populate the attributes in the Patient object.

12.4 Primary Time from FHIR Resources

The Arden Syntax specifies that each data element/object used in an MLM has a primary time. A primary

time is required for most of the Arden temporal operators to function correctly. Primary times associated

with FHIR data objects should reflect the effective point in time for that FHIR resource. This is the time

when the data was or first became clinically relevant. For the Patient resource its field

patient.meta.lastUpdated should be used; for the Observation resources effectiveDateTime is used; for

Condition resources, the condition.onsetDateTime can be used; and for Encounter resources typically the

field period.start contains the primary time. These fields are typically initialized in any new FHIR object,

but in case it should be empty, meta.lastUpdated (present in any FHIR resource Object) shall be used as a

substitute.

12.5 Pre-Defined Resources

12.5.1 Pre-defined Objects

Any Arden objects available through FHIR are available in the Data Slot and must not be defined explicitly

(see Section 12.2.1). Moreover, these Arden-FHIR objects must be used to activate standard data model

access, including native queries on FHIR repositories with the READ AS statement.

Another important object for FHIR-enabled data access is the Arden Valueset object-type. It is essential in

defining FHIR-supported valueset queries as part of the READ AS WHERE statement, for CodeSystem

type fields in Arden-FHIR objects (see Section 9.6.14). The following example demonstrates how the

Valueset object is defined. This definition must not be inside an MLM, the Valueset object is already pre-

defined:

/* How a Valueset definition would look like */

LET Valueset BE OBJECT [“system”, “code”];

12.5.2 Environment Variables

When starting a FHIR query to an external data source (FHIR repository) some information needs to be

provided explicitly in order for this READ statement to succeed. It can be arduous to provide all reference

data strings for every query (such as the network destination of your FHIR repository) or write out every

static terminology coding system for each MLM (e.g., http://snomed.info/sct for SNOMED), therefore a set

of commonly used environment variables is available in the Data Slot of each MLM.

Variables might be overwritten before the MLM is invoked, so the default values provided in this section

are only suggestions. A number of reasons can cause an environment variable to be overwritten, for

example, if it points to a public URL that has changed, a newer version of FHIR specifies another URL to

be used or the local implementing network space uses another reference than the one provided. In case no

https://hl7.org/fhir/R4B/compartmentdefinition.html
https://www.hl7.org/fhir/R4B/codesystem.html
http://snomed.info/sct

Arden Syntax for Medical Logic Systems

Page 124 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

suggested value is provided here the variable will still have a default value in each MLM, but it is up to the

implementer to provide this (see the Implementation Guide) and cannot be predicted here.

These variables can be overwritten if necessary (especially for My_FHIR_Repository this is often the case)

and the variable names are all permanently reserved, meaning that you cannot introduce a new, unrelated,

variable of the same name.

Variable Name Suggested default value Use

My_FHIR_Repository - Target FHIR repository, which is

the data source for READ and

WRITE statements. Override

with any FHIR repository base

URL

LOINC_Valuesets “http://loinc.org/vs/” Combine with LOINC valueset

codes to create a

code.coding.code search

parameter, including all coded

values of this valueset

NLM_Valuesets “https://vsac.nlm.nih.gov/valueset/” Combine with NLM valueset

codes to create a

code.coding.code search

parameter, including all coded

values of this valueset

NLMRX “http://www.nlm.nih.gov/research/u

mls/rxnorm”

code.coding.system value for US

NLM RxNorm coded fields used

in FHIR

LOINC “http://loinc.org” code.coding.system value for

LOINC coded fields in FHIR

SNOMEDCT “http://snomed.info/sct” code.coding.system value for

Snomed CT coded fields in FHIR

ICD9CM “http://hl7.org/fhir/sid/icd-9-cm” code.coding.system value for

ICD 9 (US) coded fields. Be

aware of other versions and

locales; refer to FHIR

documentation

ICD10CM “http://hl7.org/fhir/sid/icd-10-cm” code.coding.system value for

ICD 10 (US) coded fields. Be

aware of other versions and

locales, refer to FHIR

documentation

ICD11CM “http://hl7.org/fhir/sid/icd-11-cm” code.coding.system value for

ICD 11 (US) coded fields. Be

aware of other versions and

https://vsac.nlm.nih.gov/valueset
http://www.nlm.nih.gov/
http://www.nlm.nih.gov/
http://loinc.org/
http://snomed.org/
http://www.who.int/classifications/icd/en/
https://www.hl7.org/fhir/R4B/icd.html
https://www.hl7.org/fhir/R4B/icd.html
http://www.who.int/classifications/icd/en/
http://www.who.int/classifications/icd/en/

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 125

Revision date: 10/4/2023 Print date: 10/4/2023

locales, refer to FHIR

documentation

AMACPT “http://www.ama-assn.org/go/cpt” code.coding.system value for

AMA CPT coded fields used in

FHIR

ISO11073_10101 “urn:iso:std:iso:11073:10101” code.coding.system value for

medical device codes by ISO

11073-10101 (used in FHIR)

Some of these variables locate services in the network where the MLM is executed (e.g.,

My_FHIR_Repository) while others represent identifying values in the FHIR ecosystem, used to associate

codes with their terminology/ontology system (e.g., SNOMEDCT or ISO11073_10101). Those variables

may be overwritten and can be used without restriction to reference CodeSystems inside the local FHIR

repository.

My_FHIR_Repository is the most essential environment variable, and the only irreplaceable, because its

value will be used in locating the FHIR repository on which all READ AS queries are executed. Its value

might be overwritten to target a different FHIR repository than the MLM default, and thereby different

repositories can be accessed by different MLMs (even if they have the same default URL value);

Overwriting FHIR repository URL example:

LET My_FHIR_Repository BE “https://fhir.mydomain.org/R4B”;

Variables pointing to valueset URLs are intended to be used when defining a Valueset object (see Section

12.5.1). Used in the Valueset.system field, they represent the expandable URL needed to create a valueset

URL in FHIR read as statements.

LET My_LOINC_Valueset BE NEW Valueset WITH [system:=LOINC_Valueset, code:=“LL7701-
1”];

LET observation_with_LOINC BE READ AS Observation WHERE
observation_with_LOINC.code.coding.code IN My_LOINC_Valueset;

12.5.3 FHIR Valueset type variable

A valueset variable, however, defines a constructed absolute URL which, when a code of this system is

appended, must be resolved using a compatible FHIR Valueset resource. Some terminology authorities

already provide such an interface (these are listed above and may be used seamlessly in Arden). If a custom

variable is used to point at a custom valueset service it can contain only a string of the full URL pointing to

the basic valueset service path (also, resolving any valueset code to a compatible FHIR Valueset resource).

Be aware that some terminology authorities require payment and authentication for the use of their

services. Compliance with this is the responsibility of the Arden Implementer and can, if neglected, cause

the FHIR valueset query to fail.

12.5.3.1 Example: Custom Valueset definition

A Valueset is accessible through the URL https://localhost/terminology/fhir/vs/4467-1.

This Valueset URL contains two parts: The basic valueset service path (also referred to as “system”)

https://localhost/terminology/fhir/vs/ and the valueset code 4467-1.

To declare a variable for this valueset for use in a READ AS … WHERE … statement, declare a Valueset

type variable and assign it the desired code with the service path:

LET My_Terminology_Server BE “https://localhost/terminology/fhir/vs/”;

LET Custom_HbA1c_Codes BE NEW valueset WITH [system:=My_Terminology_Server,
code:=“4467-1”];

http://www.ama-assn.org/go/cpt
https://www.iso.org/standard/37890.html
https://www.iso.org/standard/37890.html
https://www.hl7.org/fhir/R4B/codesystem.html
https://www.hl7.org/fhir/valueset.html
https://www.hl7.org/fhir/valueset.html
https://localhost/terminology/fhir/vs/4467-1
http://4467-1/

Arden Syntax for Medical Logic Systems

Page 126 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

12.6 Filter Parameters – The WHERE Clause

Normally when reading a FHIR resource object the Arden Syntax READ AS … WHERE … operation will

be used. This command fetches one or more FHIR resources as Arden Objects from the remote repository

(pointed to in the environment variable My_FHIR_Repository) and applies the WHERE clause conditions

as a filter for this request. The filter functionality is considered a core pillar of medical resources

represented in FHIR, as it allows the MLM writer to specify individually what to retrieve (e.g., Type of

medical procedure, date of an encounter, diagnosis, …).

On the other hand, the WHERE clause remains conditional for FHIR READ statements, therefore it might

just be left out. If no filter parameters are defined in a LET … READ AS statement, then a list of all

resources (of the specified type) is requested from the repository. As with every FHIR READ statement,

the result will still be implicitly filtered by the base patient – so only resources subjecting the MLM’s base

patient are returned.

An implementer may choose to expand the set of supported filter parameters in a custom profile, but in

order to comply with the Arden standard, a minimum set of query parameters of each FHIR resource

should be implemented.

Below the Arden-FHIR object fields and corresponding Arden data types available in the WHERE clause

are listed. Be aware that each of these fields will be supported by compliant Arden implementations, but

additional filter parameters can be available depending on the customized profile implemented by an Arden

MLM interpreter. A two-stage filtering process will be necessary in some cases in which a set of data

objects, retrieved using FHIR search parameters, will be secondarily filtered using additional restrictions

from the Arden WHERE clause.

12.6.1 FHIR in the READ AS … WHERE … Statement Part

The main objective of using FHIR-compatible statements in an MLM’s data slot is to declare a variable as

Arden-FHIR object and fill it with data read from a FHIR repository. With the following schematic a

variable declaration (LET statement) can be structured to target a FHIR repository, whereas the general

structure of a READ AS statement is used in respect with the special FHIR rule (see Sections 11.2.1 and

11.2.2). For complete examples refer to the example section below:

/* Most basic request: Every field from the FHIR resource object is read. No other

filters than the implicit base patient is applied */

LET <variable-name> BE READ AS <FHIR-object-type>;

/* Read a variable and map fields from the FHIR object to custom variable fields to

increase readability of that variable */

LET <variable-name>[<variable-field-name>, …] BE READ AS <FHIR-object-type>[<field-

name>, …];

/* Read not all FHIR resources in one sitting, but select only the latest (most

recent clinically relevant time) */

LET <variable-name> BE READ AS LATEST <FHIR-object-type>;

/* Add the WHERE clause to a mapped FHIR object. Any statement in the WHERE clause

is a Boolean operation and specifies a filter directly applied to the FHIR

repository */

LET <variable-name>[<variable-field-name>, …] BE READ AS <FHIR-object-type>[<field-

name>, …] WHERE <variable-name>.<variable-field-name> = <filter-value> <<n:logic-

operator> <n:comparison-operator>;

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 127

Revision date: 10/4/2023 Print date: 10/4/2023

12.6.2 AND, OR, NOT Operations

Arden Syntax condition operators AND, OR and NOT are fully supported with FHIR object READs as

well. The standard operation, AND, can be used to add different filter parameters on one FHIR resource,

further restricting one search. The OR operator may be used to widen the search, either on the same or

different filter parameters.

12.6.3 Base Resource

Each FHIR resource queryable by Arden so far is based on the abstract Base resource which provides some

skeletal fields present in every final resource listed below. This Base resource is normative and not

expected to change in future versions of this document. The Base resource’s query parameters however are

in trial use. The parameters implemented in Arden are valid for FHIR repositories conforming to the

supported FHIR version in this document. Query parameters described for the base resource are available

in every other resource, although it is not possible to query a Base resource itself, as it does not contain

any clinical knowledge (added by final resources such as Encounter, Observation or Patient).

FHIR query parameter Data type Description

Language Code (preferred one of

CommonLanguages)

Language of this FHIR resource

meta.lastUpdated Time (only the Date is used) When this FHIR resource was last

changed

12.6.4 Encounter Resource

The FHIR Encounter resource is still in trial use. It is expected to change in future versions of this

document. It is included because of the frequent appearance of component data types in historical MLMs.

Its query parameters are in trial use as well, for both these reasons the parameters implemented in Arden

are valid for FHIR repositories conforming to the supported FHIR version in this document.

FHIR query parameter Data type Description

Status Code (must be any of

EncounterStatus)

Current status in this encounter.

One of EncounterStatus

Class String (Value based on extensible

ActEncounterCode)

Type of patient encounter (e.g.,

Ambulatory, virtual, …). One of

ActEncounterCode

Period Time (query for an encounter

which start/end time includes this)

Between start and end time of this

encounter

Length Duration (any in days, other

formats will be implicitly

converted)

Duration of days this encounter

lasted

https://www.hl7.org/fhir/R4B/resource.html
https://www.hl7.org/fhir/R4B/valueset-languages.html
https://www.hl7.org/fhir/R4B/encounter.html
https://www.hl7.org/fhir/R4B/codesystem-encounter-status.html
https://www.hl7.org/fhir/R4B/codesystem-encounter-status.html
http://terminology.hl7.org/3.1.0/ValueSet-v3-ActEncounterCode.html
http://terminology.hl7.org/3.1.0/ValueSet-v3-ActEncounterCode.html

Arden Syntax for Medical Logic Systems

Page 128 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

reasonCode.coding.code /

reasonCode.coding.system

String (of code and/or system

present in an encounter)

Preferably SNOMED code

explaining why this encounter takes

place

reasonReference (of Condition or

Observation)

String (condition.identifier or

observation.identifier)

If the reason for this encounter lies

in an Observation or Condition

diagnosis.condition (of Condition) String (condition.identifier) A diagnosis Condition relevant to

this encounter

partOf (of Encounter) String (encounter.identifier) The Encounter this is a part of

12.6.5 Observation Resource

The FHIR Observation resource is normative and therefore not expected to change in future versions of

this document. Future versions should remain backward compatible. The Observation’s query parameters

however are in trial use and the parameters implemented in this version of Arden are valid for FHIR

repositories conformant with the supported FHIR version in this document.

FHIR query parameter Data type Description

Status Code (must be any of

ObservationStatus)

Current status of this observation

category.coding.code /

category.coding.system

String (of code and/or system

present in an observation)

Preferably Observation Category

Code classifying the type of an

observation

code.coding.code / code.coding.system String (of code and/or system

present in an observation)

Any medical coding (LOINC,

SNOMED, etc.) specifying the

observation type

encounter (of Encounter) String (encounter.identifier) This observation is made and linked

to a healthcare event

effectiveDateTime Time Clinically relevant single time this

observation took place

effectivePeriod Time (query for an encounter

which start/end time includes

this)

Clinically relevant time period, a

query will provide one single time

and selects any Observation whose

effectivePeriod includes this

timestamp

valueQuantity.value / valueQuantity.unit

/ valueQuantity.system

Numeric (value) and String

(unit and system of unit)

Clinically relevant observation

value (numerically) of a given unit

(optional) and unit system

(optional)

https://www.hl7.org/fhir/R4B/observation.html
https://www.hl7.org/fhir/R4B/valueset-observation-status.html
http://hl7.org/fhir/ValueSet/observation-category
http://hl7.org/fhir/ValueSet/observation-category

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 129

Revision date: 10/4/2023 Print date: 10/4/2023

valueString String Textual representation of an

observations clinically relevant

value

valueCodeableConcept.coding.code /

valueCodeableConcept.coding.system

String (value as code and/or

system present in an

observation)

Any codable concept representing a

clinically relevant observation value

valueDate Time A specific date representing the

clinically relevant observation value

component.code.coding.code /

component.code.coding.system

String (of code and/or system

present in an observation)

A component, or single part, this

observation is composed of. The

component.code field represents the

specific clinical type similar to

observation.code

component.valueCodeableConcept.codin

g.code / component.

valueCodeableConcept.coding.system

String (value as code and/or

system present in an

observation)

A component, or single part, this

observation is composed of. The

component.valueCodeableConcept

field represents a medical

observation as codable concept

similar to

observation.valueCodeableConcept

component.valueQuantity.value /

component.valueQuantity.unit /

component.valueQuantity.system

Numeric (value) and String

(unit and system of unit)

A component, or single part, this

observation is composed of. The

component.valueQuantity field is a

numerical clinical observation value

similar to

observation.valueQuantity

*Note that an observation can have at most one of the mutual exclusive fields valueQuantity, valueString,

valueConcept or valueDate.

12.6.6 Condition Resource

The FHIR Condition resource remains in trial use. Its access may change in future versions of this

document. Its query parameters are in trial use as well. For both these reasons, the parameters implemented

in Arden are valid for FHIR repositories conformant with the supported FHIR version in this document.

FHIR query parameter Data type Description

clinicalStatus.coding.code Code (must be any of

ConditionClinicalStatus)

Current status of this condition

category.coding.code /

category.coding.system

String (of code and/or system

present in an observation)

Might be one of

Condition_Category_Code or an

extension, classifying the type of an

observation

https://www.hl7.org/fhir/R4B/condition.html
https://www.hl7.org/fhir/valueset-condition-clinical.html
https://www.hl7.org/fhir/valueset-condition-category.html

Arden Syntax for Medical Logic Systems

Page 130 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

code.coding.code / code.coding.system String (of code and/or system

present in an observation)

Any medical coding (LOINC,

SNOMED, etc.) specifying the

observation type

subject (of Patient) String (patient.identifier) Who has this Condition?

encounter (of Encounter) String (encounter.identifier) This Condition is created as part of

an Encounter

onsetAge.value / onsetAge.unit /

onsetAge.system

Numeric (value) and String

(unit and system of unit)

Of this clinical condition, the

estimated age (numeric) of a

specific unit (optional, unit and

system String)

onsetDateTime Time Clinically relevant date and time

this condition occurred

onsetString String Other, textual, representation of this

condition’s occurrence

12.6.7 Patient Resource

The FHIR Patient resource is normative. Future versions should remain backward compatible. The

Patient’s query parameters however are in trial use and the parameters implemented in this version of

Arden are valid for FHIR repositories conformant with the supported FHIR version in this document.

FHIR query parameter Data type Description

Gender Code (must be any of

AdministrativeGender)

Gender of this Patient

birthdate Time (only the Date is used) Individual date of birth

deceasedDateTime Time Time and date of clinical death for

this Patient

Name String (Matches any one of the

fields name.family, name.given,

name.prefix, name.suffix or

name.text)

A name associated with this Patient

Address String (Matches any of the

fields address.line,

address.city, address.district,

address.postalCode,

address.state, address.country

or address.text)

One or more addresses of this

Patient

link.other String (patient.identifier) Link to a related Patient

https://www.hl7.org/fhir/R4B/patient.html
https://www.hl7.org/fhir/R4B/valueset-administrative-gender.html

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 131

Revision date: 10/4/2023 Print date: 10/4/2023

12.7 Examples

The examples below illustrate access to URL-based services that provide the context for FHIR data access.

These include a repository for resource definitions, a terminology service, and a service for storing and

retrieving clinical data elements. Defaults are specified at execution-engine startup and need not be

referenced within the MLM. For access to non-defaulted services, addresses can be provided within the

MLM. Non-defaulted service addresses are referenced in the Data Slot using the LET command.

For the following examples, assume a patient with Patient.ID equals 1234567, Patient.active equals True,

Patient.birthdate equals 1962-10-18, and Patient.gender equals male.

12.7.1 Service/Resource Definitions

An Arden implementation will have a default terminology server, data repository, and source for resource

definitions (see Section 12.5.2). In cases where other/additional instances of these services are needed, they

are declared using the LET statement.

12.7.1.1 Examples: Define service addresses for terminology and clinical data (FHIR repository). These

definitions are used to make non-default services available.

/*defining a terminology server to use for value sets and individual codes (for
cases where the terminology server is not defaulted*/

LET My_Terminology_Server BE "https://local_or_distant_terminology_server.org/";

LET SNOMEDCT_Valuesets BE "http://snomed.info/sct/fhir/vs";

/*defining a data server (for cases where the data server is not defaulted)*/

LET My_FHIR_Repository BE "https://local_or_distant_FHIR_repository.org/";

12.7.2 Value Sets

12.7.2.1 Value Sets represent lists of codes from a particular terminology service. For Value Sets from the

any terminology service, the LET command assigns a local variable as Valueset object, storing the

terminology service URL and valueset identifying code (see Section 12.5).

12.7.2.2 Example: Define a variable representing a value set from a valueset service.

LET Diabetic_Diagnostic_codes BE NEW Valueset WITH [system:= “

https://www.nlm.nih.gov/fhir/valueset”,

code:=”2.16.840.1.113883.3.464.1003.103.11.1002”];

LET HbA1c_Test_Codes BE NEW Valueset WITH [system:=LOINC_Valuesets, code:= “LG51070-

7”];

12.7.2.3 Example: Define a valueset variable and use it in a READ statement as WHERE clause.

LET HbA1c_Test_Codes BE NEW Valueset WITH [system:=LOINC_Valuesets, code:= “LG51070-

7”];

LET Latest_HbA1c[exam] BE READ AS LATEST Observation[code.coding.code] WHERE

Latest_HbA1c.exam IN HbA1c_Test_Codes;

12.7.2.3.1 FHIR expression:

GET

https://local_or_distant_FHIR_repository.org/Observation?subject={Patient.ID}&status

=final&code:in=http://loinc.org/vs/LG51070-7

12.7.3 Observation

Much of the stored clinical data that can be represented in FHIR is found in the FHIR Observation. A

variety of result types are available and the effectiveDateTime is assigned as the primary time.

http://snomed.info/sct)

Arden Syntax for Medical Logic Systems

Page 132 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

12.7.3.1 Example: Find latest Observation with LOINC code Hemoglobin A1c.

LET Latest_HbA1c[status, codingsystem, exam] BE READ AS LATEST Observation[status,

code.coding.system, code.coding.code] WHERE Latest_HbA1c.status = “final” and

Latest_HbA1c.codingsystem = LOINC and Latest_HbA1c.exam = “LG51070-7”;

12.7.3.1.1 FHIR expression:

GET

https://local_or_distant_FHIR_repository.org/Observation?subject={Patient.ID}&status

=final&code=http://loinc.org|LG51070-7

12.7.4 Condition

The Condition resource is used to record detailed information about a condition, problem, diagnosis, or

other concept that is found in a patient’s problem list, diagnostic summary, of similar component of the

patient record. A condition is generally recorded through a CodeableConcept identifying a coding system

and code for the condition. The onsetDateTime is typically assigned as the primary time. If this is not

available, the primary time can be calculated from the onsetAge, or set to the beginning of the onsetPeriod

or the onsetRange. In cases where the period or range is relevant, this should be queried separately to place

the start and end date and time in user defined variables.

12.7.4.1 Example: Find latest Condition of diagnosed diabetes (as LOINC code).

LET Diabetic_Diagnosis[category, codingsystem, code] BE READ AS LATEST

Condition[category, code.coding.system, code.coding.code] WHERE

Diabetic_Diagnosis.category = “encounter-diagnosis” and

Diabetic_Diagnosis.codingsystem = LOINC and Diabetic_Diagnosis.code = “45636-8”;

12.7.4.1.1 FHIR expression:

GET

https://local_or_distant_FHIR_repository.org/Condition?subject={Patient.ID}&status=f

inal&code=http://loinc.org|45636-8

12.7.5 Encounter

The Encounter resource wraps up the Patients lifecycle from pre-admission, an encounter (digital,

ambulatory, private practice, …) and eventual admission and discharge for inpatient encounters. An

encounter resource by itself can have a wide scope of application, the actual fields used in this FHIR

resource can depend heavily on the implementer. However, the Status and Class fields are expected to be

present as they fundamentally define the resource and tell the recipient which structure his data has.

12.7.5.1 Example: Find latest ambulatory Encounter caused by a history of diabetes (as SNOMED-CT code).

LET Diabetic_Ambulatory_Encounter[status, cause_system, cause_code, typeOfEncounter,

admitted] BE READ AS LATEST Encounter[status, reasonCode.coding.system,

reasonCode.coding.code, class.code, period.start] WHERE

Diabetic_Ambulatory_Encounter.status = “finished” AND

Diabetic_Ambulatory_Encounter.typeOfEncounter = “AMB” AND

Diabetic_Ambulatory_Encounter.cause_system = SNOMEDCT AND

Diabetic_Ambulatory_Encounter.cause_code = “161445009”;

12.7.5.1.1 FHIR expression:

GET

https://local_or_distant_FHIR_repository.org/Encounter?subject={Patient.ID}&status=f

inal&class=|AMB&reason-code=http://snomed.info/sct|161445009

http://loinc.org/
http://loinc.org/

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 133

Revision date: 10/4/2023 Print date: 10/4/2023

12.7.6 Patient

As MLMs are invoked based on a Patient event and each FHIR resource must be related to that base patient

the plain Patient object is of limited use. It is currently supported to retrieve full patient information for the

base or a related patient.

12.7.7 AND Parameter

Further restrict one search by multiple filter parameters of the same FHIR resource object, connected by the

AND operator. A FHIR result to this assignment needs to match all parameters defined.

12.7.7.1 Example: Retrieve an Observation by its status AND code.

LET Latest_HbA1c[status, exam] BE READ AS LATEST Observation[status,

code.coding.code] WHERE Latest_HbA1c.status = “final” AND Latest_HbA1c.exam =

“55454-3”;

12.7.7.1.1 FHIR expression:

GET

https://local_or_distant_FHIR_repository.org/Observation?subject={Patient.ID}&status

=final&code=|55454-3

12.7.8 OR Parameter

Expand the search scope by including multiple parameters connected by an OR statement. If those are of

the same type, or a list of multiple values, the FHIR query will look slightly differently than for those cases

where different parameters are defined. In either case, the FHIR search result will select each resource

match at least one of the given parameters.

12.7.8.1 Example: Retrieve an Observation by either of its codes.

LET Latest_HbA1c[status, codingsystem, exam] BE READ AS LATEST Observation[status,

code.coding.system, code.coding.code] WHERE Latest_HbA1c.exam = “44331” OR

Latest_HbA1c.exam = “5432-9”;

12.7.8.1.1 FHIR expression:

GET

https://local_or_distant_FHIR_repository.org/Observation?subject={Patient.ID}&code=|

44331,|5432-9

12.7.8.2 Example: Retrieve an Observation by its code OR clinical method.

LET Latest_HbA1c[status, exam_interpretation, exam] BE READ AS LATEST

Observation[status, interpretation, code.coding.code] WHERE

Latest_HbA1c.exam_interpretation = “abnormal” OR Latest_HbA1c.exam = “5432-9”;

12.7.8.2.1 FHIR expression:

GET

https://local_or_distant_FHIR_repository.org/Observation?subject={Patient.ID}&_filte

r= method eq |272394005 or code eq |54342-9

12.7.9 NOT Parameter

The NOT parameter works as intended with each Arden READ filter parameter, able to negate this

specific condition in the FHIR filter as well.

12.7.9.1 Example: Retrieve an Observation which is not final yet.

LET Latest_HbA1c[status, codingsystem, exam] BE READ AS LATEST Observation[status,

code.coding.system, code.coding.code] WHERE Latest_HbA1c.status IS NOT “final”;

Arden Syntax for Medical Logic Systems

Page 134 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

12.7.9.1.1 FHIR expression:

GET

https://local_or_distant_FHIR_repository.org/Observation?subject={Patient.ID}&status

:ne=final

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 135

Revision date: 10/4/2023 Print date: 10/4/2023

13 ACTION SLOT

13.1 Purpose

Once the MLM has concluded that the condition specified in the logic slot holds true, the action slot is

executed, performing whatever actions are appropriate to the condition. Typical actions include sending a

message to a health care provider, adding an interpretation to the patient record, returning a result to a

calling MLM, and evoking other MLMs. Good programming practice is for an MLM’s action slot to

contain only return statements, or to contain only call and write statements. If an MLM is called from an

action slot (see Section 13.2.5) or evoked by an external event (see Section 14), the only effect of a return

statement is to terminate execution of the action slot.

13.2 Action Slot Statements

13.2.1 Write Statement

The write statement is the main statement in the action slot. It sends a text or coded message (for example,

an alert) to a destination. It has several forms:

WRITE <expr>

WRITE <expr> AT <destination>

WRITE <message>

WRITE <message> AT <destination>

<expr> is any valid expression, which usually contains text to be read by the health care provider or

variables defined in the logic slot.

<destination> is a destination variable as defined in Section 11.2.8. The format and implementation of the

destination is institution-specific. Typical destinations include the patient record, a printer, databases, and

electronic mail addresses. When the destination is omitted, the message is sent to the default destination.

This is generally the health care provider or the patient record, but the implementation is institution-

specific.

<message> is a message variable as defined in Section 11.2.6. The message variable permits institutions to

write institution-specific coded MLM messages to databases that will not accommodate the <expr> form.

<expr> is often a string. If a particular implementation or deployment of Arden Syntax needs to use XML

to structure messages, a string expression can be used to compose this message. Appendix X1 shows the

recommended DTD for structured messages.

The effect of the write statement is to send the specified message either to the default destination (which is

usually a health care provider or the patient record) or the destination that is specified.

Within a single MLM, the effect of grouping write statements is unspecified, and depends on the

implementation of the syntax.

If an MLM is called by another MLM’s action block (see Section 13.2.5), its write statements are output as

a separate group from the calling MLM’s. However, the order of the groupings is unspecified and depends

on the implementation of the syntax.

Note that embedding the AT operator (Section 9.17.3) in a WRITE statement can introduce ambiguity. The

use of the operator in this context is implementation-specific.

13.2.1.1 Examples<expr>

In these examples, serum_pot is a variable assigned in the logic slot, email_dest is a destination variable

defined in the data slot, and a_message is a message variable defined in the data slot.

WRITE "the patient's potassium is" || serum_pot;

WRITE "this is an email alert" AT email_dest;

WRITE a_message;

Arden Syntax for Medical Logic Systems

Page 136 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

13.2.1.2 Examples<message>

An institution can store coded messages without using the message variable. For example, the following

message could be stored not as a free text string but as a unique code that symbolizes the message along

with a single field that holds the serum potassium value, which is variable:

WRITE "the patient's potassium is " || serum_pot;

WRITE CK0023 || serum_pot;

CK0023 would be the institution-specific code representing "the patient’s potassium is".

The message must be explicitly assigned to the institution-specific code before the code is used in a write

statement. Generally, this assignment should take place in the data slot.

13.2.2 Return Statement

The return statement is used in MLMs that are called by other MLMs. It returns a result back to the calling

MLM; the result is assigned to the variable in the call statement (see Section 10.2.5). One or more results

can be returned by the MLM. Its form is:

RETURN <expr>;

RETURN <expr>, ..., <expr>;

<expr> is any valid expression, which may be a single item or a list. Primary times are maintained.

When a return statement is executed, no further statements in the MLM are executed.

13.2.2.1 Examples:

RETURN (diagnosis_score, diagnosis_name);

RETURN diagnosis_score, diagnosis_name;

The first example returns one expression, which is a list. The second example returns two expressions.

13.2.3 If-then Statement

The if-then statement, defined in Section 10.2.1.2, is also permitted in the action slot.

13.2.4 Switch-Case Statement

The switch-case statement, defined in Section 10.2.3, is also permitted in the action slot.

13.2.5 Call Statement

The call statement in the action slot permits an MLM to call other MLMs conditionally based upon the

conclusion in the logic slot. It is similar to the call statement in the logic slot defined in Section 10.2.5; the

arguments can be accessed with the argument statement in Section 11.2.5. Given an mlmname, the MLM

can be called directly with an optional delay. Given an event definition, all the MLMs that are normally

evoked by that event can be called with an optional delay. If the call statement is used to evoke an event,

any arguments are ignored. Its forms are:

CALL <name>;

CALL <name> DELAY <duration>;

CALL <name> WITH <expr>;

CALL <name> WITH <expr> DELAY <duration>;

CALL <name> WITH <expr>, ..., <expr>;

CALL <name> WITH <expr>, ..., <expr> DELAY <duration>;

<name> is an identifier that must represent either a valid MLM variable as defined by an MLM statement

in the data slot (see Section 11.2.4), or a valid event variable as defined by an event statement in the data

slot (see Section 11.2.3).

<duration> is a valid expression whose value is a duration.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 137

Revision date: 10/4/2023 Print date: 10/4/2023

13.2.5.1 Operation

If <name> is an MLM variable, then when the main MLM terminates, the named MLM is called. If

<name> is an event variable, then all the MLMs whose evoke slots refer to the named event are executed

(see Section 14.1). If a delay is present, then the execution of the called MLMs is delayed by the specified

duration. Whereas the call statement in the logic slot is synchronous, the call statement in the action slot is

asynchronous. The order of execution of called MLMs is implementation dependent.

13.2.5.2 Example

(where mlmx has been assigned a suitable value in the data slot, say by mlmx := MLM 'my_mlm'):

CALL mlmx DELAY 3 days;

13.2.6 While Loop

The while loop (with an optional breakloop statement), defined in Section 10.2.5.10, is also permitted in

the action slot

13.2.7 For Loop

The for loop (with an optional breakloop statement), defined in Section 10.2.6.1, is also permitted in the

action slot.

13.2.8 Assignment Statement

The assignment statement, defined in Section 10.2.1, is also permitted in the action slot. Note that with

Arden versions prior to 2.5, assignment statements were not permitted in the action slot. This capability

was added in 2.5 to allow increased flexibility for things like while loops, which are not usable without

assignment. MLM authors should remember to keep the logic to the logic slot, as much as possible. Refer

to Section 13.3, below, for details.

13.3 Action Slot Usage

The action slot is usually simple, containing a single message to be written or a single value to be returned

to a calling MLM. Multiple actions can be performed by listing several action statements. The slot can be

made more complex by using its if-then statement to select among alternative actions. While this is useful,

it is recommended that the amount of health logic in the action slot be kept to a minimum.

Arden Syntax for Medical Logic Systems

Page 138 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

14 EVOKE SLOT

14.1 Purpose

The evoke slot defines how an MLM may be triggered. An MLM may be triggered by any of the following:

14.1.1 Occurrence of Some Event

For example, on the storage of a serum potassium value in the patient database, in order to check for values

that are far out of range.

14.1.2 A Time Delay After an Event

For example, five days after ordering gentamicin for a patient, in order to check renal function.

14.1.3 Periodically After an Event

For example, every five days after ordering gentamicin for a patient, in order to check renal function over a

period of time.

14.1.4 A Constant Time Trigger

For example, on 07-27-2007 at 12:00:00.

14.1.5 A Constant Periodic Time Trigger

For example, start on Friday at 18:00:00, trigger again every week for one year.

14.2 Events

Events are distinct from data. An event may be an update or insertion in the patient database, a medically

relevant occurrence, or an institution-defined occurrence. Examples include the storage of a serum

potassium level, the ordering of a medication, the transferring of a patient to a new bed, and the recording

of a new address for a patient.

14.2.1 Event Properties

The main attribute of an event is the time that it occurred, which must be an instant in time. Events have no

values. Note the distinction between events and data. Data have values and have primary times, which are

the times that are medically most relevant. For example, a serum potassium result may have a value of 5.0

and a primary time that is the time that it was drawn from the patient. But the storage of serum potassium

event has no value, and its time is the time that the potassium was stored in the patient database.

14.2.2 Time of Events

The time of operator (see Section 9.17) applied to an event results in the time that the event occurred. For

example, time of storage_of_potassium returns the time that the potassium was stored. This value might

be different from the time of the corresponding data value that is retrieved by a read mapping (the data

value typically uses a clinically relevant time, which would often be different from the time of storing the

data). Eventtime (see Section 8.4.4) is the time of the event that evoked the MLM.

14.2.3 Declaration of Events

Events are declared in the data slot as defined in Section 11.2.3.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 139

Revision date: 10/4/2023 Print date: 10/4/2023

14.3 Evoke Slot Statements

14.3.1 Simple Trigger Statement

A simple trigger statement specifies an event or a set of events. When any of the events occurs, the MLM

is triggered. Its form is:

<event-expr>

<event-expr> is an expression that contains only event variables as defined in Section 11.2.3, the or

operator (see Section 9.4.1), the any operator (see Section 9.12.13), and parentheses. The keyword call

may also be present, to indicate that the MLM may be called by another MLM.

14.3.2 Operation

Although events do not have values, they are used in this statement as if they were syntactically Boolean.

Thus one ends up with a statement like this: event1 OR event2 OR event3. The MLM is triggered

whenever an event occurs and any of the evoke statements evaluate to true. If more than one event occurs,

the MLM may be triggered. No additional trigger criteria must be satisfied for the MLM to be evoked.

14.3.2.1 Examples

In the following examples, all the variables are event variables defined in the data slot.

penicillin_storage

penicillin_storage OR cephalosporin_storage

ANY OF (penicillin_storage, cephalosporin_storage, aminoglycoside_storage)

data:

penicillin_storage := event {store penicillin order};

cephalosporin_storage := event {store cephalosporin order};

;;

evoke:

penicillin_storage OR

cephalosporin_storage;;

14.3.3 Delayed Event Trigger Statement

A delayed event trigger statement permits the MLM to be triggered some time after an event occurs. It is

of this form:

<time-expr> AFTER TIME [OF] <event>

<time-expr> is an expression that contains only times expressed as one of the following.

• time constants (see Section 7.1.9),

• as time-of-day constants applied to the at operator in combination with a day-of-week keyword or

the reserved words today, and tomorrow using the attime reserved word to combine a day-of-

week with a time-of-day in the form <day of week> ATTIME <time of day>

• a duration constant formed by using a number constant with a duration operator

combined using the OR keyword

<event> is an event variable.

<day of week> is a day-of week-variable (see Section 8.12) or the reserved words today or tomorrow.

<time of day> is a time-of-day variable (see Section 8.11)

For example:

TODAY ATTIME 15:00 AFTER TIME OF penicillin_storage

Arden Syntax for Medical Logic Systems

Page 140 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

The MLM execution is delayed until 15:00 of the day the penicillin_storage event occurs. If the time of day

is after 15:00 the MLM will execute immediately unless the evoke slot contains another time constant (see

subsection "use of or"). If the MLM has to be executed the following day, tomorrow can be used as time

constant, for example:

TOMORROW ATTIME 02:30 AFTER TIME OF penicillin_storage

Here, the MLM execution is delayed until 02:30 of the next day. If the execution of the MLM has

scheduled for a given day of the week, that day can be also specified within the evoke slot:

MONDAY ATTIME 13:00 AFTER TIME OF penicillin_storage

The day-of-week is one of the literals Sunday, Monday, Tuesday etc. The MLM execution is delayed until

13:00 of the designated day. If the day of week of "eventtime" is the same as the designated day and

eventtime is later than 13:00, the MLM execution is delayed until the following week.

14.3.3.1 Use of OR

Time expressions for the delayed trigger can be combined using OR. In this case the whole expression is

evaluated to find the next earliest trigger time. For example:

MONDAY ATTIME 13:00 OR FRIDAY ATTIME 12:00 AFTER TIME OF penicillin_storage

This triggers the MLM on Monday if the event occurs between Friday after 12:00 and Monday before

13:00. If the event occurs outside of this time interval, the MLM is triggered on Friday.

14.3.3.2 Operation

The MLM is triggered at the time specified in the delayed trigger statement. This is usually some specified

duration after the occurrence of an event. In the special case, that the delay time is given as an absolute

point in time, the triggering is delayed to this timestamp, as soon as the event occurs. If the event occurs

after this timestamp, the MLM triggers immediately.

14.3.3.3 Examples

In the following examples, all variables are event variables:

3 days after time of penicillin_storage

1992-01-01T00:00:00 AFTER TIME OF penicillin_storage

TOMORROW ATTIME 02:00 AFTER TIME OF penicillin_storage

If time expressions are combined with OR, the MLM will be executed at the next scheduled time.

TODAY ATTIME 13:00 OR TOMORROW AT 02:00 AFTER TIME OF penicillin_storage

14.3.4 Constant Time Trigger Statement

A constant time trigger statement permits the MLM to be triggered at a specific instance in time. It has

two forms:

<time-expr>

<duration-expr> AFTER <time-expr-simple>

<duration-expr> is a duration constant formed by using a number constant (see Section 7.1.7) with a

duration operator (see Section 9.10.4).

<time-expr> as defined for the delayed event trigger statement above

<time-expr-simple> is defined as <time-expr> but without <duration-expr>

14.3.4.1 Operation

The MLM is triggered at the time specified by the time expression. This is either an absolute point in time,

or a relative date (such as tomorrow or simply a duration). A relative date is always evaluated relative to the

timepoint when the MLM becomes executable in the system. If a time expression evaluates to a point in

time which lies in the past, the MLM is triggered immediately.

For example:

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 141

Revision date: 10/4/2023 Print date: 10/4/2023

TOMORROW ATTIME 02:30

The MLM is triggered the day after it got executable at 02:30.

20 hours

The MLM is triggered 20 hours after it got executable.

14.3.4.2 Examples

In the following examples, variables are event variables:

1992-01-01T00:00:00

3 days AFTER 2007-01-01

TOMORROW ATTIME 02:30

If used with time-of-day-constants and more than one time constant is specified in the evoke slot, the MLM

will be executed at the next scheduled time.

TODAY ATTIME 13:00 OR TOMORROW AT 02:00

14.3.5 Periodic Event Trigger Statement

A periodic event trigger statement permits the MLM to be triggered at specified time intervals after an

event occurs. The cycles may continue for a specified duration, and they may be terminated by a Boolean

condition. It has two forms:

EVERY <duration-expr> FOR <duration-expr> STARTING <delayed-event-trigger>

EVERY <duration-expr> FOR <duration-expr> STARTING <delayed-event-trigger>
UNTIL <Boolean-expr>

<duration-expr> is a duration constant formed by using a number constant (see Section 7.1.7) with a

duration operator (see Section 9.10.4).

<Boolean-expr> is any valid expression. It is usually a Boolean expression that becomes true when the

MLM triggering should stop.

<delayed-event-trigger> is a delayed event trigger as defined above.

Simple trigger statements not using a delayed event trigger also are supported. Example:

EVERY 1 day FOR 14 days STARTING time of event2

14.3.5.1 Operation

The MLM is first triggered at the time specified after the starting word. It is then triggered repeatedly in

cycles of length equal to the duration specified after the every word. These cycles continue for the duration

specified after the for word. The for duration is inclusive, so every 1 day for 1 day starting 3 days after

time of event1 would trigger the MLM twice: at three days and at four days after the event.

14.3.5.2 Until

If there is an until clause, then it is evaluated as soon as the MLM is triggered; the clause may contain

references to the patient database unrelated to the event. If it is true then the MLM exits immediately, and

no further triggering occurs. Otherwise, the MLM is executed, and it is triggered again after the every

duration (assuming the for duration has not run out).

14.3.5.3 Examples

In the following examples, variables beginning with event are event variables:

every 1 day for 14 days starting 1992-01-01T00:00:00 after time of event1

every 1 day for 14 days starting time of event2

every 2 hours for 1 day starting today attime 12:00 after time of event3

every 1 week for 1 month starting 3 days after time of event4 until
last(serum_potassium) > 5.0

Arden Syntax for Medical Logic Systems

Page 142 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

14.3.6 Constant Periodic Time Trigger Statement

A constant periodic time trigger statement permits the repeatedly execution of a MLM at specific

instances of time, independent of events. It has two forms:

EVERY <duration-expr> FOR <duration-expr> STARTING <constant-time-trigger>

EVERY <duration-expr> FOR <duration-expr> STARTING <constant-time-trigger>
UNTIL <Boolean-expr>

<duration-expr> as defined for the periodic event trigger statement

<Boolean-expr> as defined for the periodic event trigger statement

<constant-time-trigger> is a constant time trigger as defined above.

Consider the following evoke slot:

EVERY 1 DAY FOR 5 months STARTING 2008-10-01T06:30;

This evoke slot could be used to run an influenza rule every day for the five months of the 2008 flu season.

14.3.6.1 Operation

As defined for the periodic event trigger statement, but the first execution is determined by a constant

time trigger statement.

14.3.6.2 Until

As defined for the periodic event trigger statement.

14.3.6.3 Examples

In the following examples, variables beginning with event are event variables:

every 1 day for 14 days starting 1992-01-01T00:00:00

every 2 hours for 1 day starting today attime 12:00

every 1 week for 1 month starting 3 days after 1992-01-01T00:00:00 until
last(serum_potassium) > 5.0

14.4 Evoke Slot Usage

The evoke slot usually contains a single statement that specifies when an MLM is triggered. If the evoke

slot has more than one statement, then the MLM is evoked whenever any of the criteria in any of the

statements occurs.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 143

Revision date: 10/4/2023 Print date: 10/4/2023

Annexes
 (Mandatory Information)

A1 FORMAL REPRESENTATION

This chapter describes two formal representations of the Arden Syntax. The first is the Backus-Naur Form while the

second is the XML representation. Either one or the other can be used to write a normative MLM.

A1.1 Backus-Naur Form

The MLM syntax is defined using Backus-Naur Form (BNF) (3). In the interest of readability and computability, the

context free grammar is expressed in Backus-Naur Form rather than in the more compact Extended Backus-Naur

Form (EBNF) (3). The following definitions hold:

<expression> – represents the non-terminal expression

"IF" – represents the terminal if, iF, If, or IF

":=" – represents the terminal :=

::= – is defined as

/*...*/ – a comment about the grammar

| – or

Terminals are listed in uppercase, but the language is case insensitive outside of character strings. In structured slots,

space, carriage return, line feed, horizontal tab, vertical tab, and form feed are considered white space and are

ignored. In addition, the terminal the is treated as white space (that is, the word the is ignored).

With minor modifications, the following grammar can be processed by an LALR(1) parser generator, except where

noted by comments against individual rules

/****** physical file containing one or more MLMs ******/

/****** file of individual MLMs ******/

<mlms> ::=

 <mlm>

 | <mlm> <mlms>

/****** categories ******/

<mlm> ::=

 <maintenance_category>

 <library_category>

 <knowledge_category>

 <resources_category>

 "END:"

<maintenance_category> ::=

 "MAINTENANCE:" <maintenance_body>

Arden Syntax for Medical Logic Systems

Page 144 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<maintenance_body> ::=

 <title_slot>

 <mlmname_slot>

 <arden_version_slot>

 <version_slot>

 <institution_slot>

 <author_slot>

 <specialist_slot>

 <date_slot>

 <validation_slot>

<library_category> ::=

 "LIBRARY:" <library_body>

<library_body> ::=

 <purpose_slot>

 <explanation_slot>

 <keywords_slot>

 <citations_slot>

 <links_slot>

<knowledge_category> ::=

 "KNOWLEDGE:" <knowledge_body>

<knowledge_body> ::=

 <type_slot>

 <data_slot>

 <priority_slot>

 <evoke_slot>

 <logic_slot>

 <action_slot>

 <urgency_slot>

<resources_category> ::=

 /* empty */ /* deprecated – */

 /* supported for backward compatibility */

 | "RESOURCES:" <resources_body>

<resources_body> ::=

 <default_slot>

 <language_slots>

/****** slots ******/

/****** maintenance slots ******/

<title_slot> ::=

 "TITLE:" <text> ";;"

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 145

Revision date: 10/4/2023 Print date: 10/4/2023

<mlmname_slot> ::=

 "MLMNAME:" <mlmname_text> ";;"

 | "FILENAME:" <mlmname_text> ";;"

 /* the "FILENAME:" form is only valid */

 /* combination with the empty version */

 /* of <arden_version_slot> */

<mlmname_text> ::=

 <letter>

 | <mlmname_text><mlmname_text_rest>

<mlmname_text_rest> ::=

 <letter>

 | <digit>

 | "."

 | "-"

 | "_"

<arden_version_slot> ::=

 "ARDEN:" <arden_version> ";;"

 | /*empty*/

 /* the empty version is only valid */

 /* combination with the "FILENAME" */

 /* form of < mlmname_slot > */

<arden_version> ::=

 "VERSION" "2"

 | "VERSION" "2.1"

 | "VERSION" "2.5"

 | "VERSION" "2.6"

 | "VERSION" "2.7"

 | "VERSION" "2.8"

 | "VERSION" "2.9"

 | "VERSION" "2.10"

 | "VERSION" "3.0"

<version_slot> ::=

 "VERSION:" <mlm_version> ";;"

<mlm_version> ::=

 <text>

<institution_slot> ::=

 "INSTITUTION:" <text> ";;" /* text limited to 80 characters */

<author_slot> ::=

 "AUTHOR:" <text> ";;" /* see 6.1.6 for details */

<specialist_slot> ::=

 "SPECIALIST:" <text> ";;" /* see 6.1.7 for details */

<date_slot> ::=

 "DATE:" <mlm_date> ";;"

Arden Syntax for Medical Logic Systems

Page 146 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<mlm_date> ::=

 <iso_date>

 | <iso_date_time>

<validation_slot> ::=

 "VALIDATION:" <validation_code> ";;"

<validation_code> ::=

 "PRODUCTION"

 | "RESEARCH"

 | "TESTING"

 | "EXPIRED"

/****** library slots ******/

<purpose_slot> ::=

 "PURPOSE:" <text> ";;"

<explanation_slot> ::=

 "EXPLANATION:" <text> ";;"

<keywords_slot> ::=

 "KEYWORDS:" <text> ";;"

/* May require special processing to handle both list and text versions */

<citations_slot> ::=

 /* empty */

 | "CITATIONS:" <citations_list> ";;"

 | "CITATIONS:" <text> ";;" /* deprecated – */

 /* supported for backward compatibility */

<citations_list> ::=

 /* empty */

 | <single_citation>

 | <single_citation> ";" <citations_list>

<single_citation> ::=

 <digits> "." <citation_type> <citation_text>

 | <citation_text>

/* This is a separate definition to allow for future expansion */

<citation_text> ::=

 <plainstring> /* see ANSI/NISO Z39.88 */

 /* for preferred OpenURL format */

<citation_type> ::=

 /* empty */

 | "SUPPORT"

 | "REFUTE"

/* May require special processing to handle both list and text versions */

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 147

Revision date: 10/4/2023 Print date: 10/4/2023

<links_slot> ::=

 /* empty */

 | "LINKS:" <links_list> ";;"

 | "LINKS:" <text> ";;" /* deprecated – */

 /* supported for backward compatibility */

<links_list> ::=

 /* empty */

 | <single_link>

 | <links_list> ";" <single_link>

<single_link> ::=

 <link_type> <link_name> <link_text>

<link_type> ::=

 /* empty */

 | "URL_LINK"

 | "MESH_LINK"

 | "OTHER_LINK"

 | "EXE_LINK"

<link_name> ::=

/* empty */

| <term> ","

/* This is a separate definition to allow for future expansion */

<link_text> ::=

<plainstring> /* see ANSI/NISO Z39.88 */

 /* for preferred OpenURL format */

/****** knowledge slots ******/

<type_slot> ::=

 "TYPE:" <type_code> ";;"

/* This is a separate definition to allow for future expansion */

<type_code> ::=

 "DATA_DRIVEN"

 | "DATA-DRIVEN" /* deprecated – supported for backwards */

 /* compatibility */

<data_slot> ::=

"DATA:" <data_block> ";;"

<priority_slot> ::=

 /* empty */

 | "PRIORITY:" <number> ";;"

<evoke_slot> ::=

 "EVOKE:" <evoke_block> ";;"

<logic_slot> ::=

 "LOGIC:" <logic_block> ";;"

Arden Syntax for Medical Logic Systems

Page 148 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<action_slot> ::=

 "ACTION:" <action_block> ";;"

<urgency_slot> ::=

 /* empty */

 | "URGENCY:" <urgency_val> ";;"

<urgency_val> ::=

 <number>

 | <identifier>

/****** resource slots ******/

<default_slot> ::=

 "DEFAULT:" <iso639-1> ";;" /* 2-character language code */

<language_slots> ::=

 <language_slots> <language_slot>

 | <language_slot>

<language_slot> ::=

 "LANGUAGE:" <iso639-1>

 <resource_terms>

 ";;"

<resource_terms> ::=

 /* empty */

 | <resource_terms> ";" <term> ":" <plainstring>

 | <term> ":" <plainstring>

/****** logic block ******/

<logic_block> ::=

 <logic_block> ";" <logic_statement>

 | <logic_statement>

<logic_statement> ::=

 /* empty */

 | <logic_assignment>

 | "IF" <logic_if_then_else2>

 | "FOR" <identifier> "IN" <expr> "DO" <logic_block> ";" "ENDDO"

 | "WHILE" <expr> "DO" <logic_block> ";" "ENDDO"

 | <logic_switch>

 | "BREAKLOOP"

 | "CONCLUDE" <expr>

<logic_if_then_else2> ::=

 <expr> "THEN" <logic_block> ";" <logic_elseif>

<logic_elseif> ::=

 <logic_endif>

 | "ELSE" <logic_block> ";" <logic_endif>

 | "ELSEIF" <logic_if_then_else2>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 149

Revision date: 10/4/2023 Print date: 10/4/2023

<logic_endif> ::=

 "ENDIF"

 | "ENDIF" "AGGREGATE"

<logic_assignment> ::=

 <identifier_becomes> <expr>

 | <time_becomes> <expr>

 | <applicability_becomes> <expr>

 | <identifier_becomes> <call_phrase>

 | "(" <data_var_list> ")" ":=" <call_phrase>

 | "LET" "(" <data_var_list> ")" "BE" <call_phrase>

 | <identifier_becomes> <new_object_phrase>

 | <identifier_becomes> <fuzzy_set_phrase>

<expr_fuzzy_set> ::=

 <expr>

 | <fuzzy_set_phrase>

<identifier_becomes> ::=

 <identifier_or_object_ref> ":="

 | "LET" <identifier_or_object_ref> "BE"

 | "NOW" ":="

<logic_switch> ::=

 "SWITCH" <identifier> ":"

 <logic_switch_cases>

 <logic_endswitch>

<logic_endswitch> ::=

 "ENDSWITCH"

 | "ENDSWITCH" "AGGREGATE"

<logic_switch_cases> ::=

 /* empty */

 | "CASE" <expr_factor> <logic_block> <logic_switch_cases>

 | "DEFAULT" <logic_block>

<identifier_or_object_ref> ::=

 <identifier>

 | <identifier_or_object_ref> "[" <expr> "]"

 | <identifier_or_object_ref> "." <identifier_or_object_ref>

 /* field reference */

<time_becomes> ::=

 "TIME" "OF" <identifier> ":="

 | "TIME" <identifier> ":="

 | "LET" "TIME" "OF" <identifier> "BE"

 | "LET" "TIME" <identifier> "BE"

Arden Syntax for Medical Logic Systems

Page 150 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<applicability_becomes> ::=

 "APPLICABILITY" "OF" <identifier> ":="

 | "APPLICABILITY" <identifier> ":="

 | "LET" "APPLICABILITY” "OF" <identifier> "BE"

 | "LET" "APPLICABILITY” <identifier> "BE"

<call_phrase> ::=

 "CALL" <identifier>

 | "CALL" <identifier> "WITH" <expr>

/****** expressions ******/

<expr> ::=

 <expr_sort>

 | <expr> "," <expr_sort>

 | "," <expr_sort>

<expr_sort> ::=

 <expr_add_list>

 | <expr_add_list> "MERGE" <expr_sort>

 | "SORT" <sort_option> <expr_sort>

 | <expr_add_list> "MERGE" <expr_sort> "USING" <expr_function>

 | "SORT" <sort_option> <expr_sort> "USING" <expr_function>

<sort_option> ::=

 /*empty*/

 | "TIME"

 | "DATA"

 | "APPLICABILITY"

<expr_add_list> ::=

 <expr_remove_list>

 | "ADD" <expr_where> "TO" <expr_where>

 | "ADD" <expr_where> "TO" <expr_where> "AT" <expr_where>

<expr_remove_list> ::=

 <expr_where>

 | "REMOVE" <expr_where> "FROM" <expr_where>

<expr_where> ::=

 <expr_range>

 | <expr_range> "WHERE" <expr_range>

<expr_range> ::=

 <expr_or>

 | <expr_or> "SEQTO" <expr_or>

<expr_or> ::=

 <expr_or> "OR" <expr_and>

 | <expr_and>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 151

Revision date: 10/4/2023 Print date: 10/4/2023

<expr_and> ::=

 <expr_and> "AND" <expr_not>

 | <expr_not>

<expr_not> ::=

 "NOT" <expr_comparison>

 | <expr_comparison>

<expr_comparison> ::=

 <expr_string>

 | <expr_find_string>

 | <expr_string> <simple_comp_op> <expr_string>

 | <expr_string> <is> <main_comp_op>

 | <expr_string> <is> "NOT" <main_comp_op>

 | <expr_string> <in_comp_op>

 | <expr_string> "NOT" <in_comp_op>

 | <expr_string> <occur> <temporal_comp_op>

 | <expr_string> <occur> "NOT" <temporal_comp_op>

 | <expr_string> <occur> <range_comp_op>

 | <expr_string> <occur> "NOT" <range_comp_op>

 | <expr_string> "MATCHES" "PATTERN" <expr_string>

<expr_find_string> ::=

 "FIND" <expr_string> "IN" "STRING" <expr_string>

<string_search_start>

 | "FIND" <expr_string> "STRING" <expr_string> <string_search_start>

<expr_string> ::=

 <expr_plus>

 | <expr_string> "||" <expr_plus>

 | <expr_string> "FORMATTED" "WITH" <format_string>

 | <expr_string> "FORMATTED" "WITH" <expr_plus>

 | "TRIM" <trim_option> <expr_string>

 | <case_option> <expr_string>

 | "SUBSTRING" <expr_plus> "CHARACTERS" <string_search_start> "FROM"

<expr_string>

<format_string> ::=

 """ <format_specification> """ /* The format string is a true */

 /* Arden Syntax string, enclosed */

 /* in a single pair of double */

 /* quotes (") */

<format_specification> ::= /* See Section 9.8.2 and Annex 5 for */

 /* explanation of valid combination and their */

 /* meanings. */

 <format_specification> <format_specification_single>

 | <format_specification_single>

Arden Syntax for Medical Logic Systems

Page 152 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<format_specification_single> ::=

 "%"<format_options><format_flag><width><precision>

 /* No spaces are permitted between elements in above form */

 | <text>

<format_options> ::=

 /* empty */

 | "+"

 | "-"

 | "0"

 | " " /* space */

 | "#"

<format_flag> ::= /* Format flags are case sensitive */

 "c"

 | "C"

 | "d"

 | "I"

 | "o"

 | "u"

 | "x"

 | "X"

 | "e"

 | "E"

 | "f"

 | "g"

 | "G"

 | "n"

 | "p"

 | "s"

 | "t"

<width> ::=

 /* empty */

 | <digits>

<precision> ::=

 /* empty */

 | "."<digits>

<trim_option> ::=

 /* empty */

 | "LEFT"

 | "RIGHT"

<case_option> ::=

 "UPPERCASE"

 | "LOWERCASE"

<string_search_start> ::=

 /* empty */

 | "STARTING" "AT" <expr_plus>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 153

Revision date: 10/4/2023 Print date: 10/4/2023

<expr_plus> ::=

 <expr_times>

 | <expr_plus> "+" <expr_times>

 | <expr_plus> "-" <expr_times>

 | "+" <expr_times>

 | "-" <expr_times>

<expr_times> ::=

 <expr_power>

 | <expr_times> "*" <expr_power>

 | <expr_times> "/" <expr_power>

<expr_power> ::=

 <expr_attime>

 | <expr_function> "**" <expr_function>

 /* exponent (second argument) must be an expression */

 /* that evaluates to a scalar number */

<expr_attime> ::=

 <expr_before>

 | <expr_before> "ATTIME" <expr_attime>

<expr_before> ::=

 <expr_ago>

 | <expr_duration> "BEFORE" <expr_ago>

 | <expr_duration> "AFTER" <expr_ago>

 | <expr_duration> "FROM" <expr_ago>

<expr_ago> ::=

 <expr_function>

 | <expr_function> "AGO"

 | <expr_duration>

 | <expr_duration> "AGO"

<expr_duration> ::=

 <expr_function>

 | <expr_function> <duration_op>

<expr_function> ::=

 <expr_factor> | <of_func_op> <expr_function>

 | <of_func_op> "OF" <expr_function>

 | <from_of_func_op> <expr_function>

 | <from_of_func_op> "OF" <expr_function>

 | <from_of_func_op> <expr_factor> "FROM" <expr_function>

Arden Syntax for Medical Logic Systems

Page 154 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 | "REPLACE" <timepart> "OF" <expr_function> "WITH" <expr_factor>

 | "REPLACE" <timepart> <expr_function> "WITH" <expr_factor>

 | <from_of_func_op> <expr_function> "USING" <expr_function>

 | <from_of_func_op> "OF" <expr_function> "USING" <expr_function>

 | <from_of_func_op> <expr_factor> "FROM" <expr_function> "USING"

<expr_function>

 | <from_func_op> <expr_factor> "FROM" <expr_function>

 | <index_from_of_func_op> <expr_function>

 | <index_from_of_func_op> "OF" <expr_function>

 | <index_from_of_func_op> <expr_factor> "FROM" <expr_function>

 | <at_least_most_op> <expr_factor> "FROM" <expr_function>

 | <at_least_most_op> <expr_factor> "ISTRUE" "FROM" <expr_function>

 | <at_least_most_op> <expr_factor> "ARETRUE" "FROM" <expr_function>

 | "INDEX" "OF" <expr_factor> "FROM" <expr_function>

 | <index_from_func_op> <expr_factor> "FROM" <expr_function>

 | <expr_factor> "AS" <as_func_op>

 | <expr_attribute_from>

 | <expr_sublist_from>

<expr_attribute_from> ::=

 "ATTRIBUTE" <expr_factor> "FROM" <expr_factor>

<expr_sublist_from> ::=

 "SUBLIST" <expr_factor> "FROM" <expr_factor>

 | "SUBLIST" <expr_factor> "STARTING" "AT" <expr_factor> "FROM"

<expr_factor>

<expr_factor> ::=

 <expr_factor_atom>

 | <expr_factor_atom> "[" <expr> "]" /* number [<expr>] is not */

 /* a valid construct */

 | <expr_factor> "." <identifier> /* object dot notation */

<expr_factor_atom> ::=

 <identifier>

 | <number>

 | <string>

 | <time_value>

 | <boolean_value>

 | <weekday_literal>

 | "TODAY"

 | "TOMORROW"

 | "NULL"

 | "CONCLUDE" /* only available in the action slot */

 | <it> /* Value of <it> is NULL outside of a */

 /* where clause and may be flagged as an */

 /* error in some implementations. */

 | "(" ")"

 | "(" <expr> ")"

 | "(" <expr_fuzzy_set> ")"

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 155

Revision date: 10/4/2023 Print date: 10/4/2023

/****** for readability *******/

<it> ::= "IT" | "THEY"

/****** comparison synonyms ******/

<is> ::= "IS" | "ARE" | "WAS" | "WERE"

<occur> ::= "OCCUR" | "OCCURS" | "OCCURRED"

/****** operators ******/

<simple_comp_op> ::=

 "=" | "EQ"

 | "<" | "LT"

 | ">" | "GT"

 | "<=" | "LE"

 | ">=" | "GE"

 | "<>" | "NE"

<main_comp_op> ::=

 <temporal_comp_op>

 | <range_comp_op>

 | <unary_comp_op>

 | <binary_comp_op> <expr_string>

/* the WITHIN TO operator will accept any ordered parameter, */

/* including numbers, strings (single characters), times, Boolean /*

<range_comp_op> ::=

 "WITHIN" <expr_string> "TO" <expr_string>

<temporal_comp_op> ::=

 "WITHIN" <expr_string> "PRECEDING" <expr_string>

 | "WITHIN" <expr_string> "FOLLOWING" <expr_string>

 | "WITHIN" <expr_string> "SURROUNDING" <expr_string>

 | "WITHIN" "PAST" <expr_string>

 | "WITHIN" "SAME" "DAY" "AS" <expr_string>

 | "BEFORE" <expr_string>

 | "AFTER" <expr_string>

 | "EQUAL" <expr_string>

 | "AT" <expr_string>

Arden Syntax for Medical Logic Systems

Page 156 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<unary_comp_op> ::=

 "PRESENT"

 | "NULL"

 | "BOOLEAN"

 | "TRUTH VALUE"

 | "CRISP"

 | "FUZZY"

 | "NUMBER"

 | "TIME"

 | "DURATION"

 | "STRING"

 | "LIST"

 | "OBJECT"

 | "LINGUISTIC VARIABLE"

 | <identifier> /*names an object i.e. left side of OBJECT statement*/

 | "TIME" "OF" "DAY"

<binary_comp_op> ::=

 "LESS" "THAN"

 | "GREATER" "THAN"

 | "GREATER" "THAN" "OR" "EQUAL"

 | "LESS" "THAN" "OR" "EQUAL"

 | "IN"

<of_func_op> ::=

 <of_read_func_op>

 | <of_noread_func_op>

<in_comp_op> ::=

 "IN" <expr_string>

<of_read_func_op> ::=

 "AVERAGE" | "AVG"

 | "COUNT"

 | "EXIST" | "EXISTS"

 | "SUM"

 | "MEDIAN"

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 157

Revision date: 10/4/2023 Print date: 10/4/2023

<of_noread_func_op> ::=

 "ANY"

 | "ANY" "ISTRUE"

 | "ALL"

 | "ALL" "ARETRUE"

 | "NO"

 | "NO" "ISTRUE"

 | "SLOPE"

 | "STDDEV"

 | "VARIANCE"

 | "INCREASE"

 | "PERCENT" "INCREASE" | "%" "INCREASE"

 | "DECREASE"

 | "PERCENT" "DECREASE" | "%" "DECREASE"

 | "INTERVAL"

 | "TIME"

 | "TIME" "OF" "DAY"

 | "DAY" "OF" "WEEK"

 | "ARCCOS"

 | "ARCSIN"

 | "ARCTAN"

 | "COSINE" | "COS"

 | "SINE" | "SIN"

 | "TANGENT" | "TAN"

 | "EXP"

 | "FLOOR"

 | "INT"

 | "ROUND"

 | "CEILING"

 | "TRUNCATE"

 | "LOG"

 | "LOG10"

 | "ABS"

 | "SQRT"

 | "EXTRACT" "YEAR"

 | "EXTRACT" "MONTH"

 | "EXTRACT" "DAY"

 | "EXTRACT" "HOUR"

 | "EXTRACT" "MINUTE"

 | "EXTRACT" "SECOND"

 | "EXTRACT" "TIME" "OF" "DAY"

 | "STRING"

 | "EXTRACT" "CHARACTERS"

 | "REVERSE"

 | "LENGTH"

 | "CLONE"

 | "EXTRACT" "ATTRIBUTE" "NAMES"

Arden Syntax for Medical Logic Systems

Page 158 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 | "APPLICABILITY"

 | "DEFUZZIFIED"

<from_func_op> ::=

 "NEAREST"

<index_from_func_op> ::=

 "INDEX" "NEAREST"

<from_of_func_op> ::=

 "MINIMUM" | "MIN"

 | "MAXIMUM" | "MAX"

 | "LAST"

 | "FIRST"

 | "EARLIEST"

 | "LATEST"

<index_from_of_func_op> ::=

 "INDEX" "MINIMUM" | "INDEX" "MIN"

 | "INDEX" "MAXIMUM" | "INDEX" "MAX"

 | "INDEX" "EARLIEST"

 | "INDEX" "LATEST"

<as_func_op> ::=

 "NUMBER"

 | "TIME"

 | "STRING"

 | "TRUTH VALUE"

<at_least_most_op> ::=

 "AT" "LEAST"

 | "AT" "MOST"

<duration_op> ::=

 "YEAR" | "YEARS"

 | "MONTH" | "MONTHS"

 | "WEEK" | "WEEKS"

 | "DAY" | "DAYS"

 | "HOUR" | "HOURS"

 | "MINUTE" | "MINUTES"

 | "SECOND" | "SECONDS"

<timepart> ::=

 "YEAR"

 | "MONTH"

 | "DAY"

 | "HOUR"

 | "MINUTE"

 | "SECOND"

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 159

Revision date: 10/4/2023 Print date: 10/4/2023

/****** factors ******/

<string> ::=

 <plainstring>

 | "LOCALIZED" <term> <localize_option>

<localize_option> ::=

 /* empty */

 | "BY" <plainstring>

 | "BY" <identifier>

<boolean_value> ::=

 "TRUE"

 | "FALSE"

 | "TRUTH VALUE" <number>

 | "TRUTH VALUE" "TRUE"

 | "TRUTH VALUE" "FALSE"

<time_value> ::=

 "NOW"

 | <iso_date_time>

 | <iso_date>

 | "EVENTTIME"

 | "TRIGGERTIME"

 | "CURRENTTIME"

 | <time_of_day>

/****** data block ******/

<data_block> ::=

 <data_block> ";" <data_statement>

 | <data_statement>

<data_statement> ::=

 /* empty */

 | <data_assignment>

 | "IF" <data_if_then_else2>

 | "FOR" <identifier> "IN" <expr> "DO" <data_block> ";" "ENDDO"

 | "WHILE" <expr> "DO" <data_block> ";" "ENDDO"

 | <data_switch>

 | "BREAKLOOP"

 | "INCLUDE" <identifier>

<data_if_then_else2> ::=

 <expr> "THEN" <data_block> ";" <data_elseif>

<data_elseif> ::=

 <data_endif>

 | "ELSE" <data_block> ";" <data_endif>

 | "ELSEIF" <data_if_then_else2>

Arden Syntax for Medical Logic Systems

Page 160 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<data_endif> ::=

 "ENDIF"

 | "ENDIF" "AGGREGATE"

<data_switch> ::=

 "SWITCH" <identifier> ":"

 <data_switch_cases>

 <data_endswitch>

<data_endswitch> ::=

 "ENDSWITCH"

 | "ENDSWITCH" "AGGREGATE"

<data_switch_cases> ::=

 /* empty */

 | "CASE" <expr_factor> <data_block> <data_switch_cases>

 | "DEFAULT" <data_block>

<data_assignment> ::=

 <identifier_becomes> <data_assign_phrase>

 | <time_becomes> <expr>

 | <applicability_becomes> <expr>

 | "(" <data_var_list> ")" ":=" "READ" <read_phrase>

 | "LET" "(" <data_var_list> ")" "BE" "READ" <read_phrase>

 | "(" <data_var_list> ")" ":=" "READ" "AS" <identifier> <read_phrase>

 | "LET" "(" <data_var_list> ")" "BE" "READ"

 "AS" <identifier> <read_phrase>

 | "(" <data_var_list> ")" ":=" "ARGUMENT"

 | "LET" "(" <data_var_list> ")" "BE" "ARGUMENT"

<data_var_list> ::=

 <identifier>

 | <identifier> "," <data_var_list>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 161

Revision date: 10/4/2023 Print date: 10/4/2023

<data_assign_phrase> ::=

 | "READ" <read_phrase>

 | "READ" "AS" <identifier> <read_phrase>

 | "READ" "AS" <expr_factor> "WHERE" <expr_or>

 | "READ" "AS" <from_of_func_op> <expr_factor> "FROM" <expr-factor>

 "WHERE" <expr_or>

 | "READ" "AS" <from_of_func_op> <expr_factor> "OF" <expr-factor>

 "WHERE" <expr_or>

 | "READ" "AS" <from_of_func_op> <of_read_func_op> <expr-factor> "WHERE"

 <expr_or>

 | "READ" "AS" <from_of_func_op> <of_read_func_op> "OF" <expr-factor>

 "WHERE" <expr_or>

 | "MLM" <term>

 | "MLM" <term> "FROM" "INSTITUTION" <string>

 | "MLM" "MLM_SELF"

 | "INTERFACE" <mapping_factor>

 | "EVENT" <mapping_factor>

 | "MESSAGE" <mapping_factor>

 | "MESSAGE" "AS" <identifier> <mapping_factor>

 | "MESSAGE" "AS" <identifier>

 | "DESTINATION" <mapping_factor>

 | "DESTINATION" "AS" <identifier> <mapping_factor>

 | "DESTINATION" "AS" <identifier>

 | "ARGUMENT"

 | "OBJECT" <object_definition>

 | "LINGUISTIC VARIABLE" <object_definition>

 | <call_phrase>

 | <new_object_phrase>

 | <fuzzy_set_phrase>

 | <expr>

<fuzzy_set_phrase> ::=

 "FUZZY SET" <fuzzy_set_init_list>

 | <expr_duration> "FUZZIFIED BY" <expr_duration>

 | <expr_factor> "FUZZIFIED BY" <expr_factor>

<fuzzy_set_init_list> ::=

 <fuzzy_set_init_element>

 | <fuzzy_set_init_list> "," <fuzzy_set_init_element>

<fuzzy_set_init_element> ::=

 "(" <fuzzy_set_init_factor> "," <expr_factor> ")"

<fuzzy_set_init_factor> ::=

 <expr_factor>

 | <number> <duration_op>

Arden Syntax for Medical Logic Systems

Page 162 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<read_phrase> ::=

 <read_where>

 | <of_read_func_op> <read_where>

 | <of_read_func_op> "OF" <read_where>

 | <from_of_func_op> <read_where>

 | <from_of_func_op> "OF" <read_where>

 | <from_of_func_op> <expr_factor> "FROM" <read_where>

<read_where> ::=

 <mapping_factor>

 | <mapping_factor> "WHERE" <it> <occur> <temporal_comp_op>

 | <mapping_factor> "WHERE" <it> <occur> "NOT" <temporal_comp_op>

 | <mapping_factor> "WHERE" <it> <occur> <range_comp_op>

 | <mapping_factor> "WHERE" <it> <occur> "NOT" <range_comp_op>

 | "(" <read_where> ")"

<mapping_factor> ::=

 "{" <data_mapping> "}"

<object_definition> ::=

 "[" <object_attribute_list> "]"

<object_attribute_list> ::=

 <identifier>

 | <identifier> "," <object_attribute_list>

<new_object_phrase> ::=

 "NEW" <identifier>

| "NEW" <identifier> "WITH" <expr>

| "NEW" <identifier> "WITH" "[" <object_init_list> "]"

| "NEW" <identifier> "WITH" <expr> "WITH" "[" <object_init_list> "]"

<object_init_list> ::=

 <object_init_element>

 | <object_init_list> "," <object_init_element>

<object_init_element> ::=

 <identifier> ":=" <expr>

/****** evoke block ******/

<evoke_block> ::=

 <evoke_statement>

 | <evoke_block> ";" <evoke_statement>

<evoke_statement> ::=

 /* empty */

 | <event_or>

 | <evoke_time>

 | <delayed_evoke>

 | <qualified_evoke_cycle>

 | "CALL" /* deprecated – kept for backward compatibility */

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 163

Revision date: 10/4/2023 Print date: 10/4/2023

<event_list> ::=

 <event_or>

 | <event_list> "," <event_or>

<event_or> ::=

 <event_or> "OR" <event_any>

 | <event_any>

<event_any> ::=

 "ANY" "(" <event_list> ")"

 | "ANY" "OF" "(" <event_list> ")"

 | "ANY" <identifier>

 | "ANY" "OF" <identifier>

 | <event_factor>

<event_factor> ::=

 "(" <event_or> ")"

 | <identifier>

<delayed_evoke>::=

 <evoke_time_expr_or> "AFTER" <event_time>

 |<evoke_time_expr_or>

 |<evoke_duration> "AFTER" <evoke_time_or>

<event_time> ::=

 "TIME" <event_any>

 | "TIME" "OF" <event_any>

<evoke_time_or>::=

 <evoke_time>

 | <evoke_time> "OR" <evoke_time_or>

<evoke_time_expr_or> ::=

 <evoke_time_expr>

 | <evoke_time_expr> "OR" <evoke_time_expr_or>

<evoke_time_expr>::=

 <evoke_duration>

 | <evoke_time>

<evoke_time> ::=

 <iso_date_time>

 | <iso_date>

 | <relative_evoke_time_expr>

Arden Syntax for Medical Logic Systems

Page 164 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<evoke_duration> ::=

 <number> <duration_op>

<relative_evoke_time_expr>::=

 "TODAY" "ATTIME" <time_of_day>

 | "TOMORROW" "ATTIME" <time_of_day>

 | <weekday_literal> "ATTIME" <time_of_day>

<weekday_literal> ::=

 "SUNDAY"

 | "MONDAY"

 | "TUESDAY"

 | "WEDNESDAY"

 | "THURSDAY"

 | "FRIDAY"

 | "SATURDAY"

<qualified_evoke_cycle> ::=

 <simple_evoke_cycle>

 | <simple_evoke_cycle> "UNTIL" <expr>

<simple_evoke_cycle> ::=

 "EVERY" <evoke_duration> "FOR" <evoke_duration> "STARTING"

<starting_delay>

<starting_delay>::=

 <event_time>

 | <delayed_evoke>

/****** action block ******/

<action_block> ::=

 <action_statement>

 | <action_block> ";" <action_statement>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 165

Revision date: 10/4/2023 Print date: 10/4/2023

<action_statement> ::=

 /* empty */

 | "IF" <action_if_then_else2>

 | "FOR" <identifier> "IN" <expr> "DO" <action_block> ";" "ENDDO"

 | "WHILE" <expr> "DO" <action_block> ";" "ENDDO"

 | <action_switch>

 | "BREAKLOOP"

 | <call_phrase>

 | <call_phrase> "DELAY" <expr>

 | "WRITE" <expr>

 | "WRITE" <expr> "AT" <identifier>

 | "RETURN" <expr>

 | <identifier_becomes> <expr>

 | <time_becomes> <expr>

 | <applicability_becomes> <expr>

 | <identifier_becomes> <new_object_phrase>

<action_if_then_else2> ::=

 <expr> "THEN" <action_block> ";" <action_elseif>

<action_elseif> ::=

 <action_endif>

 | "ELSE" <action_block> ";" <action_endif>

 | "ELSEIF" <action_if_then_else2>

<action_endif> ::=

 "ENDIF"

 | "ENDIF" "AGGREGATE"

<action_switch> ::=

 "SWITCH" <identifier> ":"

 <action_switch_cases>

 <action_endswitch>

<action_endswitch> ::=

 "ENDSWITCH"

 | "ENDSWITCH" "AGGREGATE"

<action_switch_cases> ::=

 /* empty */

 | "CASE" <expr_factor> <action_block> <action_switch_cases>

 | "DEFAULT" <action_block>

/****** lexical constructs ******/

/* Unless otherwise specificed, characters are the printable ASCII */

/* characters (ASCII 33 through and including 126), (See 5.2) */

/* The space, carriage return, line feed, horizontal tab, vertical tab, */

/* and form feed are collectively referred to as white space. */

/* See also Section 7.1.20. */

Arden Syntax for Medical Logic Systems

Page 166 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<plainstring> ::=

 /* any string of characters enclosed in double quotes (" ASCII 22) */

 /* with nested "" */

 /* (character set limitations do not apply here) */

 /* one possible regular expression to match Arden Syntax strings: */

 /* /"([^"]|/"/")*/" */

<identifier> ::=

 /* up to 80 characters total (no reserved words allowed) */

 <letter> <identifier_rest>

<identifier_rest> ::= /* no spaces are permitted between elements */

 /* empty */

 | <letter> <identifier>

 | <digit> <identifier>

 | "_" <identifier>

<text> ::=

 /* any string of characters without ";;" */

<format_text> ::=

 /* any string of characters */

<number> ::= /* no spaces are permitted between elements */

 <digits> <exponent>

 | <digits> "." <exponent>

 | <digits> "." <digits> <exponent>

 | "." <digits> <exponent>

<exponent> ::= /* no spaces are permitted between elements */

 /* null */

 | <e> <sign> <digits>

<e> ::=

 "E"

 | "e"

<sign> ::=

 /* null */

 | "+"

 | "-"

<digits> ::= /* no spaces are permitted between elements */

 <digit>

 | <digit> <digits>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 167

Revision date: 10/4/2023 Print date: 10/4/2023

<digit> ::=

 "0"

 | "1"

 | "2"

 | "3"

 | "4"

 | "5"

 | "6"

 | "7"

 | "8"

 | "9"

<letter> ::=

 "a" | "b" | "c" | "d"

 | "e" | "f" | "g" | "h"

 | "i" | "j" | "k" | "l"

 | "m" | "n" | "o" | "p"

 | "q" | "r" | "s" | "t"

 | "u" | "v" | "w" | "x"

 | "y" | "z"

 | "A" | "B" | "C" | "D"

 | "E" | "F" | "G" | "H"

 | "I" | "J" | "K" | "L"

 | "M" | "N" | "O" | "P"

 | "Q" | "R" | "S" | "T"

 | "U" | "V" | "W" | "X"

 | "Y" | "Z"

<iso_date> ::= /* no spaces are permitted between elements */

 <digit> <digit> <digit> <digit> "-" <digit> <digit> "-" <digit> <digit>

<iso_date_time> ::= /* no spaces are permitted between elements */

 <digit> <digit> <digit> <digit> "-" <digit> <digit> "-" <digit> <digit>

<t>

 <digit> <digit> ":" <digit> <digit> ":" <digit> <digit>

 <fractional_seconds>

 <time_zone>

<time_of_day> ::= /* no spaces are permitted between elements */

<digit> <digit> ":" <digit> <digit>

<seconds>

<time_zone>

<seconds> ::= /* no spaces are permitted between elements */

 ":" <digit> <digit> <fractional_seconds>

 | /* empty */

Arden Syntax for Medical Logic Systems

Page 168 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

<t> ::=

 "T"

 | "t"

<fractional_seconds> ::= /* no spaces are permitted between elements */

 "." <digits>

 | /* empty */

<time_zone> ::= /* no spaces are permitted between elements */

 /* null */

 | <zulu>

 | "+" <digit> <digit> ":" <digit> <digit>

 | "-" <digit> <digit> ":" <digit> <digit>

<zulu> ::=

 "Z"

 | "z"

<term> ::=

 /* any string of characters enclosed in single quotes (‘, ASCII 44)

without ";;" */

<data_mapping> ::=

 /* any balanced string of characters enclosed in curly brackets { } */

 /* (ASCII 123 and 125, respectively) without ";;" the data mapping */

 /* does not include the curly bracket characters */

<multi_line_comment> ::=

 /* any string of characters enclosed between pairs of "/*" and"*/" */

 /* (character set limitations do not apply here) */

<single_line_comment> ::=

 /* any string of characters located between "//" and */

 /* an end-of-line markner (CR, LF, or CR/LF pair) */

 /* (character set limitations do not apply here) */

<iso639-1> ::=

 /* 2-letter character code as defined by standard ISO 639-1 */

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 169

Revision date: 10/4/2023 Print date: 10/4/2023

A1.2 XML Schema for MLMs

The following sections detail a schema that may be used to represent MLMs in XML. Later versions of Arden

Syntax will include alternate, non-textual representations of medical logic modules as part of the normative

standard. This informative appendix contains two basic resources. The first is a complete XML schema for

Version 2.10 of the Arden Syntax. This schema can be used to express MLMs in XML. The second resource is

an XSL Transform which will convert MLMs represented in XML consistent with the published schema into

the original ASCII-based representation.

A1.2.1 Graphic Representation of Schema

Figure A1.1 Graphic Representation of XML Schema for Arden Syntax MLMs

Arden Syntax for Medical Logic Systems

Page 170 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

A1.2.2 Textual Schema

For convenience, the ArdenML schema is broken up into six parts. These are printed below.

A1.2.2.1 File: Arden2_9.xsd.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:include schemaLocation="ArdenMaintenance2_9.xsd"/>

 <xs:include schemaLocation="ArdenLibrary2_9.xsd"/>

 <xs:include schemaLocation="ArdenKnowledge2_9.xsd"/>

 <xs:include schemaLocation="ArdenResources2_9.xsd"/>

 <xs:element name="ArdenMLs">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="ArdenML" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="ArdenML">

 <xs:annotation>

 <xs:documentation>Arden Syntax Version 2.10 for Medical Logic

Module</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Maintenance"/>

 <xs:element ref="Library"/>

 <xs:element ref="Knowledge"/>

 <xs:element ref="Resources"/>

 <!-- Removed attribute minOccurs in Arden Syntax version 2.10 -->

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

A1.2.2.2 File: ArdenMaintenance2_9.xsd.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:element name="Maintenance">

 <xs:annotation>

 <xs:documentation>Maintenance Category -- metadata about the whole

MLM</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:choice>

 <xs:element name="MLMName">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:minLength value="1"/>

 <xs:maxLength value="80"/>

 <xs:pattern value="[a-z,A-Z]{1}[a-z,A-Z,0-9,.,\-,_]*"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="FileName">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:minLength value="1"/>

 <xs:maxLength value="80"/>

 <xs:pattern value="[a-z,A-Z]{1}[a-z,A-Z,0-9,.,\-,_]*"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:choice>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 171

Revision date: 10/4/2023 Print date: 10/4/2023

 <xs:element name="Arden" minOccurs="0">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Version 2"/>

 <xs:enumeration value="Version 2.1"/>

 <xs:enumeration value="Version 2.5"/>

 <xs:enumeration value="Version 2.6"/>

 <xs:enumeration value="Version 2.7"/>

 <xs:enumeration value="Version 2.8"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:enumeration value="Version 2.9"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:enumeration value="Version 2.10"/>

 <!-- Added in Arden Syntax version 2.10 -->

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Version">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:maxLength value="80"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Institution" type="InstitutionType"/>

 <xs:element name="Author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Person" type="PersonType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Specialist">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Person" type="PersonType" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Date" type="xs:date"/>

 <xs:element name="Validation">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="testing"/>

 <xs:enumeration value="research"/>

 <xs:enumeration value="production"/>

 <xs:enumeration value="expired"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="InstitutionType">

 <xs:annotation>

 <xs:documentation>insitutuion definition associated with institution slot and person

association</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Name_of_Institution" type="xs:string"/>

 <xs:element name="Contact" type="ContactType" minOccurs="0"/>

 <xs:element name="Institution_Type" type="xs:string" minOccurs="0"/>

 <xs:element name="Institution_Constitution" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="PersonType">

 <xs:annotation>

 <xs:documentation>defines a person in the role of an MLM author or

specialist</xs:documentation>

Arden Syntax for Medical Logic Systems

Page 172 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Person_ID" type="xs:ID" minOccurs="0"/>

 <xs:choice>

 <xs:sequence>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="MiddleName" type="xs:string" minOccurs="0"/>

 <xs:element name="SurName" type="xs:string"/>

 </xs:sequence>

 <xs:element name="Name" type="xs:string"/>

 </xs:choice>

 <xs:element name="Surfix" type="xs:string" minOccurs="0"/>

 <xs:element name="Generational" type="xs:string" minOccurs="0"/>

 <xs:element name="Degree" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="Contact" type="ContactType" minOccurs="0"/>

 <xs:element name="Profession" type="xs:string" minOccurs="0"/>

 <xs:element name="Relevant_Expertise" type="xs:string" minOccurs="0"/>

 <xs:element name="Classification_Relevant_Expertise" minOccurs="0"

maxOccurs="unbounded">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Content Area Expert"/>

 <xs:enumeration value="Patient/Carers Representative"/>

 <xs:enumeration value="Guideline Methodologist"/>

 <xs:enumeration value="Systematic Reviewer"/>

 <xs:enumeration value="Meta Analyst"/>

 <xs:enumeration value="Heath Economist"/>

 <xs:enumeration value="Information Scientist"/>

 <xs:enumeration value="Adminstrative Support"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Potential_Conflicts_of_Interest" type="xs:string" minOccurs="0"/>

 <xs:element name="Insitution_Affiliation" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Institution" type="InstitutionType"/>

 <xs:element name="Institutional_Role" type="xs:string" minOccurs="0"/>

 <xs:element name="Representitive_Role" type="xs:boolean" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ContactType">

 <xs:annotation>

 <xs:documentation>contact information for an entity</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Address" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="Telephone" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="Fax" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="E-mail" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="Web_Site" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

A1.2.2.3 File: ArdenLibrary2_9.xsd.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:element name="Library">

 <xs:annotation>

 <xs:documentation>Library Category -- metadata about the medical knowledge in the

MLM</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 173

Revision date: 10/4/2023 Print date: 10/4/2023

 <xs:element name="Purpose" type="xs:string"/>

 <xs:element name="Explanation" type="xs:string"/>

 <xs:element name="Keywords">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Keyword" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Citations" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Citation" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="CitationLevel" minOccurs="0">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="support"/>

 <xs:enumeration value="refute"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="CitationText" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Links" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Link" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="LinkType" minOccurs="0">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:whiteSpace value="replace"/>

 <xs:enumeration value="URL_Link"/>

 <xs:enumeration value="MeSH_Link"/>

 <xs:enumeration value="EXE_Link"/>

 <xs:enumeration value="Other_Link"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="LinkName" type="xs:string"

minOccurs="0"/>

 <xs:element name="LinkText" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

A1.2.2.4 File: ArdenKnowledge2_9.xsd.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:include schemaLocation="ArdenKnowledgeExpression2_9.xsd"/>

 <xs:element name="Knowledge">

 <xs:annotation>

Arden Syntax for Medical Logic Systems

Page 174 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xs:documentation>Knowledge Category -- data mappings, evoking / triggering event

definitions, clinical logic, actions to be taken based on clinical logic</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Type">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="data_driven"/>

 <xs:enumeration value="data-driven"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Data" type="DataStatementType"/>

 <xs:element name="Priority" default="50" minOccurs="0">

 <xs:simpleType>

 <xs:restriction base="xs:decimal">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="99"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Evoke" type="EvokeStatementType" minOccurs="0"/>

 <xs:element name="Logic" type="LogicStatementType"/>

 <xs:element name="Action" type="ActionStatementType"/>

 <xs:element name="Urgency" minOccurs="0">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="99"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Assignment">

 <xs:complexType>

 <xs:sequence>

 <xs:choice>

 <xs:element name="Identifier" type="DotOperatorSupportIdentifierType"/>

 <xs:element name="TimeOf">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="ApplicabilityOf">

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 <xs:element name="Assigned" type="ExprType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Object">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ObjectIdentifier" type="ObjectIdentifierType"/>

 <xs:element name="Defined">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Attribute" type="ObjectAttributeType"

maxOccurs="unbounded"/>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 175

Revision date: 10/4/2023 Print date: 10/4/2023

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="LinguisticVariable">

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ObjectIdentifier" type="ObjectIdentifierType"/>

 <xs:element name="Defined">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Attribute" type="ObjectAttributeType"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Call">

 <xs:complexType>

 <xs:sequence>

 <xs:choice>

 <xs:element name="Identifier" type="DotOperatorSupportIdentifierType"/>

 <xs:element name="IdentifierList">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 <xs:element name="Assigned">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"/>

 <xs:element name="With" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="ExprGroup" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="New">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="DotOperatorSupportIdentifierType"/>

 <xs:element name="Assigned">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ObjectIdentifier" type="ObjectIdentifierType"/>

 <xs:choice minOccurs="0">

 <xs:element name="WithExpr">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="ExprGroup" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="WithObject">

Arden Syntax for Medical Logic Systems

Page 176 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Assignment" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier"

type="GeneralIdentifierType"/>

 <xs:element name="Assigned">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="ExprGroup"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Breakloop">

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:complexType>

 <xs:complexContent>

 <xs:restriction base="xs:anyType"/>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="DataStatementType">

 <xs:choice maxOccurs="unbounded">

 <xs:element name="Read">

 <xs:complexType>

 <xs:sequence>

 <xs:choice>

 <xs:element name="Identifier" type="DotOperatorSupportIdentifierType"/>

 <xs:element name="IdentifierList">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 <xs:element name="Assigned">

 <xs:complexType>

 <xs:sequence>

 <xs:choice>

 <xs:element name="Mapping" type="MappingContentsType"/>

 <xs:group ref="ReadAggregationGroup"/>

 <xs:group ref="ReadTransformationGroup"/>

 </xs:choice>

 <xs:element name="ReadWhere" type="ReadWhereType"

minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="ReadAs">

 <xs:complexType>

 <xs:sequence>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 177

Revision date: 10/4/2023 Print date: 10/4/2023

 <xs:element name="Identifier" type="GeneralIdentifierType"/>

 <xs:element name="Assigned">

 <xs:complexType>

 <xs:sequence>

 <xs:choice>

 <xs:element name="Mapping" type="MappingContentsType"/>

 <xs:group ref="ReadAggregationGroup"/>

 <xs:group ref="ReadTransformationGroup"/>

 </xs:choice>

 <xs:element name="ReadWhere" type="ReadWhereType"

minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Event" type="MappingType"/>

 <xs:element name="MLM" type="MLMType"/>

 <xs:element name="Argument">

 <xs:complexType>

 <xs:choice>

 <xs:element name="Identifier" type="DotOperatorSupportIdentifierType"/>

 <xs:element name="IdentifierList">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <xs:element name="Message" type="MappingType"/>

 <xs:element name="MessageAs" type="MappingAsType"/>

 <xs:element name="Destination" type="MappingType"/>

 <xs:element name="DestinationAs" type="MappingAsType"/>

 <xs:element ref="Assignment"/>

 <xs:element name="If">

 <xs:complexType>

 <xs:sequence>

 <xs:sequence maxOccurs="unbounded">

 <xs:element name="Condition" type="ExprType"/>

 <xs:element name="Then" type="DataStatementType"/>

 </xs:sequence>

 <xs:element name="Else" type="DataStatementType" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="aggregate" type="xs:boolean" use="optional"

default="false"/>

 <!-- Added in Arden Syntax version 2.9 -->

 </xs:complexType>

 </xs:element>

 <xs:element name="Switch">

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="DotOperatorSupportIdentifierType"/>

 <xs:element name="Case" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Condition" type="ExprType"/>

 <xs:element name="Then" type="DataStatementType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Default" type="DataStatementType" minOccurs="0"/>

 </xs:sequence>

Arden Syntax for Medical Logic Systems

Page 178 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xs:attribute name="aggregate" type="xs:boolean" use="optional"

default="false"/>

 <!-- Added in Arden Syntax version 2.9 -->

 </xs:complexType>

 </xs:element>

 <xs:element ref="Call"/>

 <xs:element name="While">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Condition" type="ExprType"/>

 <xs:element name="Do" type="DataStatementType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="For">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"/>

 <xs:element name="In" type="ExprType"/>

 <xs:element name="Do" type="DataStatementType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element ref="Breakloop"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="Interface" type="MappingType"/>

 <xs:element ref="Object"/>

 <xs:element ref="LinguisticVariable"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:element ref="New"/>

 <xs:element name="Include">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="EvokeStatementType">

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:group ref="ExprGroup"/>

 <xs:element name="PeriodicTrigger">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Every" type="ExprType"/>

 <xs:element name="For" type="ExprType"/>

 <xs:element name="Starting" type="ExprType"/>

 <xs:element name="Until" type="ExprType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element ref="Call"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="LogicStatementType">

 <xs:choice maxOccurs="unbounded">

 <xs:element ref="Assignment"/>

 <xs:element name="If">

 <xs:complexType>

 <xs:sequence>

 <xs:sequence maxOccurs="unbounded">

 <xs:element name="Condition" type="ExprType"/>

 <xs:element name="Then" type="LogicStatementType"/>

 </xs:sequence>

 <xs:element name="Else" type="LogicStatementType" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="aggregate" type="xs:boolean" use="optional"

default="false"/>

 <!-- Added in Arden Syntax version 2.9 -->

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 179

Revision date: 10/4/2023 Print date: 10/4/2023

 </xs:complexType>

 </xs:element>

 <xs:element name="Switch">

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="DotOperatorSupportIdentifierType"/>

 <xs:element name="Case" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Condition" type="ExprType"/>

 <xs:element name="Then" type="LogicStatementType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Default" type="LogicStatementType" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="aggregate" type="xs:boolean" use="optional"

default="false"/>

 <!-- Added in Arden Syntax version 2.9 -->

 </xs:complexType>

 </xs:element>

 <xs:element name="Conclude" type="ExprType"/>

 <xs:element ref="Call"/>

 <xs:element name="While">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Condition" type="ExprType"/>

 <xs:element name="Do" type="LogicStatementType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="For">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"/>

 <xs:element name="In" type="ExprType"/>

 <xs:element name="Do" type="LogicStatementType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element ref="Breakloop"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="New"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="ActionStatementType">

 <xs:choice maxOccurs="unbounded">

 <xs:element name="Write">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="ExprGroup"/>

 <xs:element name="At" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Return" type="ExprType"/>

 <xs:element name="If">

 <xs:complexType>

 <xs:sequence>

 <xs:sequence maxOccurs="unbounded">

 <xs:element name="Condition" type="ExprType"/>

 <xs:element name="Then" type="ActionStatementType"/>

 </xs:sequence>

Arden Syntax for Medical Logic Systems

Page 180 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xs:element name="Else" type="ActionStatementType" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="aggregate" type="xs:boolean" use="optional"

default="false"/>

 <!-- Added in Arden Syntax version 2.9 -->

 </xs:complexType>

 </xs:element>

 <xs:element name="Switch">

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="DotOperatorSupportIdentifierType"/>

 <xs:element name="Case" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Condition" type="ExprType"/>

 <xs:element name="Then" type="ActionStatementType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Default" type="ActionStatementType" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="aggregate" type="xs:boolean" use="optional"

default="false"/>

 <!-- Added in Arden Syntax version 2.9 -->

 </xs:complexType>

 </xs:element>

 <xs:element name="Call">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"/>

 <xs:element name="With" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="ExprGroup" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Delay" type="ExprType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="While">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Condition" type="ExprType"/>

 <xs:element name="Do" type="ActionStatementType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="For">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"/>

 <xs:element name="In" type="ExprType"/>

 <xs:element name="Do" type="ActionStatementType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element ref="Breakloop"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="Assignment"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="MappingType">

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"/>

 <xs:element name="Assigned">

 <xs:complexType>

 <xs:sequence>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 181

Revision date: 10/4/2023 Print date: 10/4/2023

 <xs:element name="Mapping" type="MappingContentsType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="MappingAsType">

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"/>

 <xs:element name="Assigned">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Mapping" type="MappingContentsType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="required"/>

 </xs:complexType>

 <xs:complexType name="ComplexMappingType">

 <xs:sequence>

 <xs:element name="Mapping" type="MappingContentsType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ExprMappingType">

 <xs:sequence>

 <xs:group ref="ExprGroup"/>

 <xs:element name="Mapping" type="MappingContentsType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="MappingContentsType">

 <xs:sequence>

 <xs:element name="Contents" type="xs:string" minOccurs="0"/>

 <xs:element name="XForms" type="XFormsType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="XFormsType">

 <xs:choice maxOccurs="unbounded">

 <xs:element name="input" type="XFormsInputType"/>

 <xs:element name="select1" type="XFormsSelect1Type"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="XFormsInputType">

 <xs:sequence>

 <xs:element name="label" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="XFormsSelect1Type">

 <xs:sequence>

 <xs:element name="label" type="xs:string"/>

 <xs:element name="item" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="label" type="xs:string"/>

 <xs:element name="value" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="MLMType">

 <xs:sequence>

 <xs:element name="Identifier" type="GeneralIdentifierType"/>

 <xs:element name="Assigned" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Term" type="xs:string"/>

 <xs:element name="FromInstitution" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

Arden Syntax for Medical Logic Systems

Page 182 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ReadWhereType">

 <xs:choice>

 <xs:group ref="OccurComparisonOperatorGroup"/>

 <xs:element name="Not">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="OccurComparisonOperatorGroup"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 <xs:group name="OccurComparisonOperatorGroup">

 <xs:choice>

 <xs:element ref="OccurEQ"/>

 <xs:element ref="OccurWithinTo"/>

 <xs:element ref="OccurWithinPreceding"/>

 <xs:element ref="OccurWithinFollowing"/>

 <xs:element ref="OccurWithinSurrounding"/>

 <xs:element ref="OccurWithinPast"/>

 <xs:element ref="OccurWithinSameDayAs"/>

 <xs:element ref="OccurBefore"/>

 <xs:element ref="OccurAfter"/>

 <xs:element ref="OccurAt"/>

 </xs:choice>

 </xs:group>

 <xs:group name="ReadAggregationGroup">

 <xs:choice>

 <xs:element name="Average" type="ComplexMappingType"/>

 <xs:element name="Count" type="ComplexMappingType"/>

 <xs:element name="Exist" type="ComplexMappingType"/>

 <xs:element name="Sum" type="ComplexMappingType"/>

 <xs:element name="Median" type="ComplexMappingType"/>

 <xs:element name="Minimum" type="ComplexMappingType"/>

 <xs:element name="Maximum" type="ComplexMappingType"/>

 <xs:element name="Last" type="ComplexMappingType"/>

 <xs:element name="First" type="ComplexMappingType"/>

 <xs:element name="Earliest" type="ComplexMappingType"/>

 <xs:element name="Latest" type="ComplexMappingType"/>

 </xs:choice>

 </xs:group>

 <xs:group name="ReadTransformationGroup">

 <xs:choice>

 <xs:element name="MinimumFrom" type="ExprMappingType"/>

 <xs:element name="MaximumFrom" type="ExprMappingType"/>

 <xs:element name="LastFrom" type="ExprMappingType"/>

 <xs:element name="FirstFrom" type="ExprMappingType"/>

 <xs:element name="EarliestFrom" type="ExprMappingType"/>

 <xs:element name="LatestFrom" type="ExprMappingType"/>

 </xs:choice>

 </xs:group>

 <xs:complexType name="GeneralIdentifierType">

 <xs:sequence>

 <xs:element name="Index" type="ExprType" minOccurs="0"/>

 </xs:sequence>

 <xs:attributeGroup ref="IdentifierAttrGroup"/>

 </xs:complexType>

 <xs:complexType name="ObjectIdentifierType">

 <xs:attribute name="var" type="IdentifierVarType" use="required"/>

 </xs:complexType>

 <xs:complexType name="ObjectAttributeType">

 <xs:attribute name="var" type="IdentifierVarType" use="required"/>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 </xs:complexType>

 <xs:simpleType name="IdentifierItVarType">

 <xs:restriction base="IdentifierVarType">

 <xs:enumeration value="it"/>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 183

Revision date: 10/4/2023 Print date: 10/4/2023

 <xs:enumeration value="they"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="TimeOfDayTime">

 <xs:restriction base="xs:NMTOKEN">

 <xs:pattern value="[0-9]{2}:[0-9]{2}:[0-9]{2}(.([z,Z],+[0-9]{2}:[0-9]{2},-[0-9]{2}:[0-

9]{2}))?"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

A1.2.2.5 File: ArdenKnowledgeExpression2_9.xsd.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:element name="Value">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="otype" use="optional">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="null"/>

 <xs:enumeration value="boolean"/>

 <xs:enumeration value="number"/>

 <xs:enumeration value="time"/>

 <xs:enumeration value="duration"/>

 <xs:enumeration value="string"/>

 <xs:enumeration value="list"/>

 <xs:enumeration value="time-of-day"/>

 <xs:enumeration value="day-of-week"/>

 <xs:enumeration value="truth-value"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:enumeration value="fuzzy-number"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:enumeration value="fuzzy-time"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:enumeration value="fuzzy-duration"/>

 <!-- Added in Arden Syntax version 2.9 -->

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="unit" use="optional">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="year"/>

 <xs:enumeration value="years"/>

 <xs:enumeration value="month"/>

 <xs:enumeration value="months"/>

 <xs:enumeration value="week"/>

 <xs:enumeration value="weeks"/>

 <xs:enumeration value="day"/>

 <xs:enumeration value="days"/>

 <xs:enumeration value="hour"/>

 <xs:enumeration value="hours"/>

 <xs:enumeration value="minute"/>

 <xs:enumeration value="minutes"/>

 <xs:enumeration value="second"/>

 <xs:enumeration value="seconds"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="List">

Arden Syntax for Medical Logic Systems

Page 184 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="ExprGroup" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!-- 9.2 List operators -->

 <xs:element name="Set" type="UnaryMultipleType"/>

 <xs:element name="Merge" type="BinaryType"/>

 <xs:element name="MergeUsing" type="TernaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="Sort" type="SortUnaryType"/>

 <xs:element name="SortUsing" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="AddTo" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="AddToAt" type="TernaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="RemoveFrom" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <!-- 9.3 Where operators -->

 <xs:element name="Where" type="BinaryType"/>

 <!-- 9.4 Logical operators -->

 <xs:element name="Or" type="BinaryMultipleType"/>

 <xs:element name="And" type="BinaryMultipleType"/>

 <xs:element name="Not" type="UnaryType"/>

 <!-- 9.5 Simple comparison operators -->

 <xs:element name="EQ" type="BinaryType"/>

 <xs:element name="NE" type="BinaryType"/>

 <xs:element name="LT" type="BinaryType"/>

 <xs:element name="LE" type="BinaryType"/>

 <xs:element name="GT" type="BinaryType"/>

 <xs:element name="GE" type="BinaryType"/>

 <!-- 9.6 Is comparison operators -->

 <xs:element name="IsEQ" type="IsBinaryType"/>

 <xs:element name="IsLT" type="IsBinaryType"/>

 <xs:element name="IsGT" type="IsBinaryType"/>

 <xs:element name="IsLE" type="IsBinaryType"/>

 <xs:element name="IsGE" type="IsBinaryType"/>

 <xs:element name="IsWithinTo" type="IsTernaryType"/>

 <xs:element name="IsWithinPreceding" type="IsTernaryType"/>

 <xs:element name="IsWithinFollowing" type="IsTernaryType"/>

 <xs:element name="IsWithinSurrounding" type="IsTernaryType"/>

 <xs:element name="IsWithinPast" type="IsBinaryType"/>

 <xs:element name="IsWithinSameDayAs" type="IsBinaryType"/>

 <xs:element name="IsBefore" type="IsBinaryType"/>

 <xs:element name="IsAfter" type="IsBinaryType"/>

 <xs:element name="IsIn" type="IsBinaryType"/>

 <xs:element name="IsPresent" type="IsUnaryType"/>

 <xs:element name="IsNull" type="IsUnaryType"/>

 <xs:element name="IsBoolean" type="IsUnaryType"/>

 <xs:element name="IsNumber" type="IsUnaryType"/>

 <xs:element name="IsString" type="IsUnaryType"/>

 <xs:element name="IsTime" type="IsUnaryType"/>

 <xs:element name="IsTimeOfDay" type="IsUnaryType"/>

 <xs:element name="IsDuration" type="IsUnaryType"/>

 <xs:element name="IsList" type="IsUnaryType"/>

 <xs:element name="In" type="BinaryType"/>

 <xs:element name="IsObject" type="IsObjectType"/>

 <xs:element name="IsFuzzy" type="IsUnaryType"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:element name="IsCrisp" type="IsUnaryType"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <!-- 9.7 Occur comparison operators -->

 <xs:element name="OccurEQ" type="OccurBinaryType"/>

 <xs:element name="OccurWithinTo" type="OccurTernaryType"/>

 <xs:element name="OccurWithinPreceding" type="OccurTernaryType"/>

 <xs:element name="OccurWithinFollowing" type="OccurTernaryType"/>

 <xs:element name="OccurWithinSurrounding" type="OccurTernaryType"/>

 <xs:element name="OccurWithinPast" type="OccurBinaryType"/>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 185

Revision date: 10/4/2023 Print date: 10/4/2023

 <xs:element name="OccurWithinSameDayAs" type="OccurBinaryType"/>

 <xs:element name="OccurBefore" type="OccurBinaryType"/>

 <xs:element name="OccurAfter" type="OccurBinaryType"/>

 <xs:element name="OccurAt" type="OccurBinaryType"/>

 <!-- 9.8 String operators -->

 <xs:element name="Concat" type="BinaryMultipleType"/>

 <xs:element name="FormattedWith" type="BinaryType"/>

 <xs:element name="String" type="UnaryType"/>

 <xs:element name="MatchesPattern" type="BinaryType"/>

 <xs:element name="Length" type="UnaryType"/>

 <xs:element name="Uppercase" type="UnaryType"/>

 <xs:element name="Lowercase" type="UnaryType"/>

 <xs:element name="Trim" type="UnaryType"/>

 <xs:element name="LeftTrim" type="UnaryType"/>

 <xs:element name="RightTrim" type="UnaryType"/>

 <xs:element name="FindString" type="BinaryType"/>

 <xs:element name="FindStringStartingAt" type="TernaryType"/>

 <xs:element name="SubstringCharactersFrom" type="BinaryType"/>

 <xs:element name="SubstringCharactersStartingAtFrom" type="TernaryType"/>

 <xs:element name="Localized" type="UnaryType"/>

 <xs:element name="LocalizedBy" type="BinaryType"/>

 <!-- 9.9 Arithmetic operators -->

 <xs:element name="Add" type="BinaryMultipleType"/>

 <xs:element name="Plus" type="UnaryType"/>

 <xs:element name="Subtract" type="BinaryMultipleType"/>

 <xs:element name="Minus" type="UnaryType"/>

 <xs:element name="Multiply" type="BinaryMultipleType"/>

 <xs:element name="Divide" type="BinaryMultipleType"/>

 <xs:element name="Power" type="BinaryType"/>

 <!-- 9.10 Temporal -->

 <xs:element name="After" type="BinaryType"/>

 <xs:element name="Before" type="BinaryType"/>

 <xs:element name="Ago" type="UnaryType"/>

 <xs:element name="From" type="BinaryType"/>

 <xs:element name="TimeOfDay" type="UnaryType"/>

 <xs:element name="DayOfWeek" type="UnaryType"/>

 <xs:element name="ExtractYear" type="UnaryType"/>

 <!-- Moved operators category in Arden Syntax version 2.8 -->

 <xs:element name="ExtractMonth" type="UnaryType"/>

 <!-- Moved operators category in Arden Syntax version 2.8 -->

 <xs:element name="ExtractDay" type="UnaryType"/>

 <!-- Moved operators category in Arden Syntax version 2.8 -->

 <xs:element name="ExtractHour" type="UnaryType"/>

 <!-- Moved operators category in Arden Syntax version 2.8 -->

 <xs:element name="ExtractMinute" type="UnaryType"/>

 <!-- Moved operators category in Arden Syntax version 2.8 -->

 <xs:element name="ExtractSecond" type="UnaryType"/>

 <!-- Moved operators category in Arden Syntax version 2.8 -->

 <xs:element name="ReplaceYearWith" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="ReplaceMonthWith" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="ReplaceDayWith" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="ReplaceHourWith" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="ReplaceMinuteWith" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="ReplaceSecondWith" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <!-- 9.11 Duration operators -->

 <xs:element name="Year" type="UnaryType"/>

 <xs:element name="Month" type="UnaryType"/>

 <xs:element name="Week" type="UnaryType"/>

 <xs:element name="Day" type="UnaryType"/>

 <xs:element name="Hour" type="UnaryType"/>

 <xs:element name="Minute" type="UnaryType"/>

 <xs:element name="Second" type="UnaryType"/>

 <!-- 9.12 Aggregation operators -->

 <xs:element name="Count" type="UnaryType"/>

Arden Syntax for Medical Logic Systems

Page 186 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xs:element name="Exist" type="UnaryType"/>

 <xs:element name="Average" type="UnaryType"/>

 <xs:element name="Median" type="UnaryType"/>

 <xs:element name="Sum" type="UnaryType"/>

 <xs:element name="Stddev" type="UnaryType"/>

 <xs:element name="Variance" type="UnaryType"/>

 <xs:element name="Minimum" type="UnaryType"/>

 <xs:element name="MinimumUsing" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="Maximum" type="UnaryType"/>

 <xs:element name="MaximumUsing" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="Last" type="UnaryType"/>

 <xs:element name="First" type="UnaryType"/>

 <xs:element name="Any" type="UnaryType"/>

 <xs:element name="All" type="UnaryType"/>

 <xs:element name="No" type="UnaryType"/>

 <xs:element name="Latest" type="UnaryType"/>

 <xs:element name="LatestUsing" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="Earliest" type="UnaryType"/>

 <xs:element name="EarliestUsing" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="Element" type="BinaryType"/>

 <xs:element name="ExtractCharacters" type="UnaryType"/>

 <xs:element name="Seqto" type="BinaryType"/>

 <xs:element name="Reverse" type="UnaryType"/>

 <xs:element name="IndexLatest" type="UnaryType"/>

 <xs:element name="IndexEarliest" type="UnaryType"/>

 <xs:element name="IndexMinimum" type="UnaryType"/>

 <xs:element name="IndexMaximum" type="UnaryType"/>

 <!-- 9.13 Query aggregation operators -->

 <xs:element name="NearestFrom" type="BinaryType"/>

 <xs:element name="IndexNearestFrom" type="BinaryType"/>

 <xs:element name="IndexOfFrom" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="AtLeastFrom" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="AtMostFrom" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="Slope" type="UnaryType"/>

 <!-- 9.14 Transformation operators -->

 <xs:element name="MinimumFrom" type="BinaryType"/>

 <xs:element name="MinimumFromUsing" type="TernaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="MaximumFrom" type="BinaryType"/>

 <xs:element name="MaximumFromUsing" type="TernaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="FirstFrom" type="BinaryType"/>

 <xs:element name="LastFrom" type="BinaryType"/>

 <xs:element name="SublistElementFrom" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="SublistElementStartingAtFrom" type="TernaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="Increase" type="UnaryType"/>

 <xs:element name="Decrease" type="UnaryType"/>

 <xs:element name="PcntIncrease" type="UnaryType"/>

 <xs:element name="PcntDecrease" type="UnaryType"/>

 <xs:element name="EarliestFrom" type="BinaryType"/>

 <xs:element name="EarliestFromUsing" type="TernaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="LatestFrom" type="BinaryType"/>

 <xs:element name="LatestFromUsing" type="TernaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element name="IndexMinimumFrom" type="BinaryType"/>

 <xs:element name="IndexMaximumFrom" type="BinaryType"/>

 <!-- 9.15 Query transformation operators -->

 <xs:element name="Interval" type="UnaryType"/>

 <!-- 9.16 Numeric function operators -->

 <xs:element name="Arccos" type="UnaryType"/>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 187

Revision date: 10/4/2023 Print date: 10/4/2023

 <xs:element name="Arcsin" type="UnaryType"/>

 <xs:element name="Arctan" type="UnaryType"/>

 <xs:element name="Cosine" type="UnaryType"/>

 <xs:element name="Sine" type="UnaryType"/>

 <xs:element name="Tangent" type="UnaryType"/>

 <xs:element name="Exp" type="UnaryType"/>

 <xs:element name="Log" type="UnaryType"/>

 <xs:element name="Log10" type="UnaryType"/>

 <xs:element name="Int" type="UnaryType"/>

 <xs:element name="Floor" type="UnaryType"/>

 <xs:element name="Ceiling" type="UnaryType"/>

 <xs:element name="Truncate" type="UnaryType"/>

 <xs:element name="Round" type="UnaryType"/>

 <xs:element name="Abs" type="UnaryType"/>

 <xs:element name="Sqrt" type="UnaryType"/>

 <!-- 9.17 Time function operators -->

 <xs:element name="Time" type="UnaryType"/>

 <xs:element name="Attime" type="BinaryType"/>

 <!-- 9.18 Object operators -->

 <xs:element name="Clone" type="UnaryType"/>

 <xs:element name="ExtractAttributeNames" type="UnaryType"/>

 <xs:element name="AttributeFrom" type="BinaryType"/>

 <!-- 9.19 Fuzzy operators -->

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:element name="FuzzySet" type="FuzzyType"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:element name="FuzzifiedBy" type="BinaryType"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:element name="Defuzzified" type="UnaryType"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:element name="Applicability" type="UnaryType"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <!-- 9.20 Type Conversion operators -->

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:element name="AsNumber" type="UnaryType"/>

 <!-- Moved operators category in Arden Syntax version 2.9 -->

 <xs:element name="AsString" type="UnaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <!-- Moved operators category in Arden Syntax version 2.9 -->

 <xs:element name="AsTime" type="UnaryType"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <!-- Moved operators category in Arden Syntax version 2.9 -->

 <xs:element name="AsTruthValue" type="UnaryType"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:complexType name="ExprType">

 <xs:sequence>

 <xs:group ref="ExprGroup"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 </xs:complexType>

 <xs:complexType name="UnaryType">

 <xs:sequence>

 <xs:group ref="ExprGroup"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 </xs:complexType>

 <xs:complexType name="BinaryType">

 <xs:sequence>

 <xs:group ref="ExprGroup" minOccurs="2" maxOccurs="2"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 </xs:complexType>

 <xs:complexType name="TernaryType">

 <xs:sequence>

 <xs:group ref="ExprGroup" minOccurs="3" maxOccurs="3"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 </xs:complexType>

 <xs:complexType name="UnaryMultipleType">

 <xs:sequence>

Arden Syntax for Medical Logic Systems

Page 188 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xs:group ref="ExprGroup" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 </xs:complexType>

 <xs:complexType name="BinaryMultipleType">

 <xs:sequence>

 <xs:group ref="ExprGroup" minOccurs="2" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 </xs:complexType>

 <xs:complexType name="SortUnaryType">

 <xs:sequence>

 <xs:group ref="ExprGroup"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 <xs:attribute name="order" type="SortClassType" use="optional" default="data"/>

 </xs:complexType>

 <xs:complexType name="IsUnaryType">

 <xs:sequence>

 <xs:group ref="ExprGroup"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 <xs:attribute name="type" type="IsClassType" use="optional" default="is"/>

 </xs:complexType>

 <xs:complexType name="IsBinaryType">

 <xs:sequence>

 <xs:group ref="ExprGroup" minOccurs="2" maxOccurs="2"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 <xs:attribute name="type" type="IsClassType" use="optional" default="is"/>

 </xs:complexType>

 <xs:complexType name="IsTernaryType">

 <xs:sequence>

 <xs:group ref="ExprGroup" minOccurs="3" maxOccurs="3"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 <xs:attribute name="type" type="IsClassType" use="optional" default="is"/>

 </xs:complexType>

 <xs:complexType name="IsObjectType">

 <xs:sequence>

 <xs:group ref="ExprGroup"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 <xs:attribute name="type" type="IsClassType" use="optional" default="is"/>

 <xs:attribute name="dtype" type="xs:NMTOKEN" use="optional"/>

 </xs:complexType>

 <xs:complexType name="OccurBinaryType">

 <xs:sequence>

 <xs:group ref="ExprGroup" minOccurs="2" maxOccurs="2"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 <xs:attribute name="type" type="OccurClassType" use="optional" default="occurred"/>

 </xs:complexType>

 <xs:complexType name="OccurTernaryType">

 <xs:sequence>

 <xs:group ref="ExprGroup" minOccurs="3" maxOccurs="3"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 <xs:attribute name="type" type="OccurClassType" use="optional" default="occurred"/>

 </xs:complexType>

 <xs:complexType name="DotOperatorSupportIdentifierType">

 <xs:sequence>

 <xs:element name="Index" type="ExprType" minOccurs="0"/>

 <xs:element name="Identifier" type="DotOperatorSupportIdentifierType" minOccurs="0"/>

 </xs:sequence>

 <xs:attributeGroup ref="IdentifierAttrGroup"/>

 </xs:complexType>

 <xs:complexType name="FuzzyType">

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:sequence>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 189

Revision date: 10/4/2023 Print date: 10/4/2023

 <xs:element name="FuzzyElement" type="BinaryType" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 </xs:complexType>

 <xs:simpleType name="SortClassType">

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="data"/>

 <xs:enumeration value="time"/>

 <xs:enumeration value="applicability"/>

 <!-- Added in Arden Syntax version 2.9 -->

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="IsClassType">

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="is"/>

 <xs:enumeration value="are"/>

 <xs:enumeration value="was"/>

 <xs:enumeration value="were"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="OccurClassType">

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="occur"/>

 <xs:enumeration value="occurs"/>

 <xs:enumeration value="occurred"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="IdentifierVarType">

 <xs:restriction base="xs:NMTOKEN">

 <xs:minLength value="1"/>

 <xs:maxLength value="80"/>

 <xs:whiteSpace value="collapse"/>

 <xs:pattern value="[a-z,A-Z]{1}([a-z,A-Z,0-9,_])*"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:group name="ExprGroup">

 <xs:choice>

 <xs:element name="Identifier" type="DotOperatorSupportIdentifierType"/>

 <xs:element ref="Value"/>

 <xs:element ref="List"/>

 <!-- 9.2 List operators -->

 <xs:element ref="Set"/>

 <xs:element ref="Merge"/>

 <xs:element ref="MergeUsing"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="Sort"/>

 <xs:element ref="SortUsing"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="AddTo"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="AddToAt"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="RemoveFrom"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <!-- 9.3 Where operators -->

 <xs:element ref="Where"/>

 <!-- 9.4 Logical operators -->

 <xs:element ref="Or"/>

 <xs:element ref="And"/>

 <xs:element ref="Not"/>

 <!-- 9.5 Simple comparison operators -->

 <xs:element ref="EQ"/>

 <xs:element ref="NE"/>

 <xs:element ref="LT"/>

 <xs:element ref="LE"/>

 <xs:element ref="GT"/>

 <xs:element ref="GE"/>

 <!-- 9.6 Is comparison operators -->

 <xs:element ref="IsEQ"/>

 <xs:element ref="IsLT"/>

Arden Syntax for Medical Logic Systems

Page 190 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xs:element ref="IsGT"/>

 <xs:element ref="IsLE"/>

 <xs:element ref="IsGE"/>

 <xs:element ref="IsWithinTo"/>

 <xs:element ref="IsWithinPreceding"/>

 <xs:element ref="IsWithinFollowing"/>

 <xs:element ref="IsWithinSurrounding"/>

 <xs:element ref="IsWithinPast"/>

 <xs:element ref="IsWithinSameDayAs"/>

 <xs:element ref="IsBefore"/>

 <xs:element ref="IsAfter"/>

 <xs:element ref="IsIn"/>

 <xs:element ref="IsPresent"/>

 <xs:element ref="IsNull"/>

 <xs:element ref="IsBoolean"/>

 <xs:element ref="IsNumber"/>

 <xs:element ref="IsString"/>

 <xs:element ref="IsTime"/>

 <xs:element ref="IsTimeOfDay"/>

 <xs:element ref="IsDuration"/>

 <xs:element ref="IsList"/>

 <xs:element ref="In"/>

 <xs:element ref="IsObject"/>

 <xs:element ref="IsFuzzy"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:element ref="IsCrisp"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <!-- 9.7 Occur comparison operators -->

 <xs:element ref="OccurEQ"/>

 <xs:element ref="OccurWithinTo"/>

 <xs:element ref="OccurWithinPreceding"/>

 <xs:element ref="OccurWithinFollowing"/>

 <xs:element ref="OccurWithinSurrounding"/>

 <xs:element ref="OccurWithinPast"/>

 <xs:element ref="OccurWithinSameDayAs"/>

 <xs:element ref="OccurBefore"/>

 <xs:element ref="OccurAfter"/>

 <xs:element ref="OccurAt"/>

 <!-- 9.8 String operators -->

 <xs:element ref="Concat"/>

 <xs:element ref="FormattedWith"/>

 <xs:element ref="String"/>

 <xs:element ref="MatchesPattern"/>

 <xs:element ref="Length"/>

 <xs:element ref="Uppercase"/>

 <xs:element ref="Lowercase"/>

 <xs:element ref="Trim"/>

 <xs:element ref="LeftTrim"/>

 <xs:element ref="RightTrim"/>

 <xs:element ref="FindString"/>

 <xs:element ref="FindStringStartingAt"/>

 <xs:element ref="SubstringCharactersFrom"/>

 <xs:element ref="SubstringCharactersStartingAtFrom"/>

 <xs:element ref="Localized"/>

 <xs:element ref="LocalizedBy"/>

 <!-- 9.9 Arithmetic operators -->

 <xs:element ref="Add"/>

 <xs:element ref="Plus"/>

 <xs:element ref="Subtract"/>

 <xs:element ref="Minus"/>

 <xs:element ref="Multiply"/>

 <xs:element ref="Divide"/>

 <xs:element ref="Power"/>

 <!-- 9.10 Temporal operators -->

 <xs:element ref="After"/>

 <xs:element ref="Before"/>

 <xs:element ref="Ago"/>

 <xs:element ref="From"/>

 <xs:element ref="TimeOfDay"/>

 <xs:element ref="DayOfWeek"/>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 191

Revision date: 10/4/2023 Print date: 10/4/2023

 <xs:element ref="ExtractYear"/>

 <!-- Moved operators category in Arden Syntax version 2.8 -->

 <xs:element ref="ExtractMonth"/>

 <!-- Moved operators category in Arden Syntax version 2.8 -->

 <xs:element ref="ExtractDay"/>

 <!-- Moved operators category in Arden Syntax version 2.8 -->

 <xs:element ref="ExtractHour"/>

 <!-- Moved operators category in Arden Syntax version 2.8 -->

 <xs:element ref="ExtractMinute"/>

 <!-- Moved operators category in Arden Syntax version 2.8 -->

 <xs:element ref="ExtractSecond"/>

 <!-- Moved operators category in Arden Syntax version 2.8 -->

 <xs:element ref="ReplaceYearWith"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="ReplaceMonthWith"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="ReplaceDayWith"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="ReplaceHourWith"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="ReplaceMinuteWith"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="ReplaceSecondWith"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <!-- 9.11 Duration operators -->

 <xs:element ref="Year"/>

 <xs:element ref="Month"/>

 <xs:element ref="Week"/>

 <xs:element ref="Day"/>

 <xs:element ref="Hour"/>

 <xs:element ref="Minute"/>

 <xs:element ref="Second"/>

 <!-- 9.12 Aggregation operators -->

 <xs:element ref="Count"/>

 <xs:element ref="Exist"/>

 <xs:element ref="Average"/>

 <xs:element ref="Median"/>

 <xs:element ref="Sum"/>

 <xs:element ref="Stddev"/>

 <xs:element ref="Variance"/>

 <xs:element ref="Minimum"/>

 <xs:element ref="MinimumUsing"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="Maximum"/>

 <xs:element ref="MaximumUsing"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="Last"/>

 <xs:element ref="First"/>

 <xs:element ref="Any"/>

 <xs:element ref="All"/>

 <xs:element ref="No"/>

 <xs:element ref="Latest"/>

 <xs:element ref="LatestUsing"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="Earliest"/>

 <xs:element ref="EarliestUsing"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="Element"/>

 <xs:element ref="ExtractCharacters"/>

 <xs:element ref="Seqto"/>

 <xs:element ref="Reverse"/>

 <xs:element ref="IndexLatest"/>

 <xs:element ref="IndexEarliest"/>

 <xs:element ref="IndexMinimum"/>

 <xs:element ref="IndexMaximum"/>

 <!-- 9.13 Query aggregation operators -->

 <xs:element ref="NearestFrom"/>

 <xs:element ref="IndexNearestFrom"/>

 <xs:element ref="IndexOfFrom"/>

 <!-- Added in Arden Syntax version 2.8 -->

Arden Syntax for Medical Logic Systems

Page 192 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xs:element ref="AtLeastFrom"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="AtMostFrom"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="Slope"/>

 <!-- 9.14 Transformation operators -->

 <xs:element ref="MinimumFrom"/>

 <xs:element ref="MinimumFromUsing"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="MaximumFrom"/>

 <xs:element ref="MaximumFromUsing"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="FirstFrom"/>

 <xs:element ref="LastFrom"/>

 <xs:element ref="SublistElementFrom"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="SublistElementStartingAtFrom"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="Increase"/>

 <xs:element ref="Decrease"/>

 <xs:element ref="PcntIncrease"/>

 <xs:element ref="PcntDecrease"/>

 <xs:element ref="EarliestFrom"/>

 <xs:element ref="EarliestFromUsing"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="LatestFrom"/>

 <xs:element ref="LatestFromUsing"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <xs:element ref="IndexMinimumFrom"/>

 <xs:element ref="IndexMaximumFrom"/>

 <!-- 9.15 Query transformation operators -->

 <xs:element ref="Interval"/>

 <!-- 9.16 Numeric function operators -->

 <xs:element ref="Arccos"/>

 <xs:element ref="Arcsin"/>

 <xs:element ref="Arctan"/>

 <xs:element ref="Cosine"/>

 <xs:element ref="Sine"/>

 <xs:element ref="Tangent"/>

 <xs:element ref="Exp"/>

 <xs:element ref="Log"/>

 <xs:element ref="Log10"/>

 <xs:element ref="Int"/>

 <xs:element ref="Floor"/>

 <xs:element ref="Ceiling"/>

 <xs:element ref="Truncate"/>

 <xs:element ref="Round"/>

 <xs:element ref="Abs"/>

 <xs:element ref="Sqrt"/>

 <!-- 9.17 Time function operators -->

 <xs:element ref="Time"/>

 <xs:element ref="Attime"/>

 <!-- 9.18 Object operators -->

 <xs:element ref="Clone"/>

 <xs:element ref="ExtractAttributeNames"/>

 <xs:element ref="AttributeFrom"/>

 <!-- 9.19 Fuzzy operators -->

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:element ref="FuzzySet"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:element ref="FuzzifiedBy"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:element ref="Defuzzified"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:element ref="Applicability"/>

 <!-- Added in Arden Syntax version 2.9 -->

 <!-- 9.20 Type Conversion operators -->

 <!-- Added in Arden Syntax version 2.9 -->

 <xs:element ref="AsNumber"/>

 <!-- Moved operators category in Arden Syntax version 2.9 -->

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 193

Revision date: 10/4/2023 Print date: 10/4/2023

 <xs:element ref="AsString"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <!-- Moved operators category in Arden Syntax version 2.9 -->

 <xs:element ref="AsTime"/>

 <!-- Added in Arden Syntax version 2.8 -->

 <!-- Moved operators category in Arden Syntax version 2.9 -->

 <xs:element ref="AsTruthValue"/>

 <!-- Added in Arden Syntax version 2.9 -->

 </xs:choice>

 </xs:group>

 <xs:attributeGroup name="IdentifierAttrGroup">

 <xs:attribute name="var" type="IdentifierVarType" use="required"/>

 <xs:attribute name="reserved" type="xs:boolean" use="optional" default="false"/>

 <xs:attribute name="otype" type="xs:NMTOKEN" use="optional"/>

 </xs:attributeGroup>

</xs:schema>

A1.2.2.6 File: ArdenResources2_9.xsd.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:element name="Resources">

 <xs:annotation>

 <xs:documentation>Resources Category -- set of languages on MLM</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Default" type="LanguageCodeType"/>

 <xs:element name="Language" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Terms" minOccurs="0" maxOccurs="unbounded">

 <!-- Added attribute minOccurs in Arden Syntax version 2.9 -->

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="key" type="xs:NMTOKEN"

use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="code" type="LanguageCodeType" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:simpleType name="LanguageCodeType">

 <xs:restriction base="xs:NMTOKEN">

 <xs:pattern value="[a-z]{2}"/>

 <xs:pattern value="[a-z]{2}_[A-Z]{2}"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

A1.2.3 XML Transform

An extensible stylesheet language transformations (XSLT) is also available which will convert MLMs expressed in

ArdenML into the ASCII form of Arden. This conversion is provided to allow sites familiar with the standard,

textual version of Arden MLMs to easily review and incorporate MLMs expressed in XML.

Arden Syntax for Medical Logic Systems

Page 194 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

A1.2.3.1 File: Arden2_9.xsl

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <xsl:output method="html" encoding="UTF-8"/>

 <xsl:include href="ArdenMaintenance2_9.xsl"/>

 <xsl:include href="ArdenLibrary2_9.xsl"/>

 <xsl:include href="ArdenKnowledge2_9.xsl"/>

 <xsl:include href="ArdenResources2_9.xsl"/>

 <xsl:template match="/">

 <html>

 <head>

 <link href="Arden.css" rel="stylesheet" type="text/css"/>

 </head>

 <body>

 <xsl:for-each select="/ArdenMLs/ArdenML">

 <xsl:apply-templates/>

 <div class="SlotName">end:</div>

 </xsl:for-each>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

A1.2.3.2 File: ArdenMaintenance2_9.xsl

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <xsl:template match="Maintenance">

 <div class="SlotName">maintenance:</div>

 <table>

 <tbody valign="top">

 <tr>

 <td width="50"/>

 <td width="100">title:</td>

 <td><xsl:value-of select="Title"/><xsl:text>;;</xsl:text></td>

 </tr>

 <xsl:if test="boolean(FileName)">

 <tr>

 <td/>

 <td>filename:</td>

 <td><xsl:value-of select="FileName"/><xsl:text>;;</xsl:text></td>

 </tr>

 </xsl:if>

 <xsl:if test="boolean(MLMName)">

 <tr>

 <td/>

 <td>mlmname:</td>

 <td><xsl:value-of select="MLMName"/><xsl:text>;;</xsl:text></td>

 </tr>

 </xsl:if>

 <xsl:if test="boolean(Arden)">

 <tr>

 <td/>

 <td>arden:</td>

 <td><xsl:value-of select="Arden"/><xsl:text>;;</xsl:text></td>

 </tr>

 </xsl:if>

 <tr>

 <td/>

 <td>version:</td>

 <td><xsl:value-of select="Version"/><xsl:text>;;</xsl:text></td>

 </tr>

 <tr>

 <td/>

 <td>institution:</td>

 <td><xsl:value-of select="Institution"/><xsl:text>;;</xsl:text></td>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 195

Revision date: 10/4/2023 Print date: 10/4/2023

 </tr>

 <tr>

 <td/>

 <td>author:</td>

 <td>

 <xsl:for-each select="Author/Person">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text>;</xsl:text>

 </xsl:if>

 </xsl:for-each>

 <xsl:text>;;</xsl:text>

 </td>

 </tr>

 <tr>

 <td/>

 <td>specialist:</td>

 <td>

 <xsl:for-each select="Specialist/Person">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text>;</xsl:text>

 </xsl:if>

 </xsl:for-each>

 <xsl:text>;;</xsl:text>

 </td>

 </tr>

 <tr>

 <td/>

 <td>date:</td>

 <td><xsl:value-of select="Date"/><xsl:text>;;</xsl:text></td>

 </tr>

 <tr>

 <td/>

 <td>validation:</td>

 <td><xsl:value-of select="Validation"/><xsl:text>;;</xsl:text></td>

 </tr>

 </tbody>

 </table>

 </xsl:template>

 <xsl:template match="Contact">

 <xsl:text> (</xsl:text>

 <xsl:for-each select="E-mail">

 <xsl:element name="a">

 <xsl:attribute name="href">mailto:<xsl:value-of select="."/></xsl:attribute>

 <xsl:value-of select="."/>

 </xsl:element>

 <xsl:if test="position()!=last()">

 <xsl:text>, </xsl:text>

 </xsl:if>

 </xsl:for-each>

 <xsl:text>)</xsl:text>

 </xsl:template>

 <xsl:template match="Person">

 <xsl:choose>

 <xsl:when test="boolean(Name)">

 <xsl:value-of select="Name"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="FirstName"/>

 <xsl:choose>

 <xsl:when test="boolean(MiddleName)">

 <xsl:text> </xsl:text>

 <xsl:value-of select="MiddleName"/>

 <xsl:text>. </xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text> </xsl:text>

 </xsl:otherwise>

 </xsl:choose>

Arden Syntax for Medical Logic Systems

Page 196 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xsl:value-of select="SurName"/>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:if test="boolean(Surfix)">

 <xsl:text>, </xsl:text>

 <xsl:value-of select="Surfix"/>

 <xsl:text>. </xsl:text>

 </xsl:if>

 <xsl:for-each select="Degree">

 <xsl:text>, </xsl:text>

 <xsl:value-of select="."/>

 </xsl:for-each>

 <xsl:apply-templates select="Contact"/>

 </xsl:template>

</xsl:stylesheet>

A1.2.3.3 File: ArdenLibrary2_9.xsl

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <xsl:template match="Library">

 <div class="SlotName">library:</div>

 <table>

 <tbody valign="top">

 <tr>

 <td width="50"/>

 <td width="100">purpose:</td>

 <td colspan="2"><xsl:value-of select="Purpose"/><xsl:text>;;</xsl:text></td>

 </tr>

 <tr>

 <td/>

 <td>explanation:</td>

 <td colspan="2"><xsl:value-of

select="Explanation"/><xsl:text>;;</xsl:text></td>

 </tr>

 <tr>

 <td/>

 <td>keywords:</td>

 <td colspan="2">

 <xsl:for-each select="Keywords/Keyword">

 <xsl:value-of select="."/>

 <xsl:call-template name="LineFinish"/>

 </xsl:for-each>

 <xsl:if test="not(boolean(Keywords/Keyword))">

 <xsl:text>;;</xsl:text>

 </xsl:if>

 </td>

 </tr>

 <xsl:for-each select="Citations/Citation">

 <tr>

 <td/>

 <td><xsl:if test="position()=1">citations:</xsl:if></td>

 <td width="6"><xsl:value-of select="position()"/>.</td>

 <td>

 <xsl:if test="boolean(CitationLevel)">

 <xsl:value-of select="CitationLevel"/><xsl:text> </xsl:text>

 </xsl:if>

 <xsl:value-of select="CitationText"/>

 <xsl:call-template name="LineFinish"/>

 </td>

 </tr>

 </xsl:for-each>

 <xsl:if test="not(boolean(Citations/Citation))">

 <tr>

 <td/>

 <td>citations:</td>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 197

Revision date: 10/4/2023 Print date: 10/4/2023

 <td width="6"><xsl:text>;;</xsl:text></td>

 <td/>

 </tr>

 </xsl:if>

 <tr>

 <td/>

 <td>links:</td>

 <td colspan="2">

 <xsl:for-each select="Links/Link">

 <xsl:if test="boolean(LinkType)">

 <xsl:value-of select="LinkType"/><xsl:text> </xsl:text>

 </xsl:if>

 <xsl:if test="boolean(LinkName)">

 <xsl:text>'</xsl:text><xsl:value-of select="LinkName"/><xsl:text>',

</xsl:text>

 </xsl:if>

 <xsl:text>"</xsl:text><xsl:value-of

select="LinkText"/><xsl:text>"</xsl:text>

 <xsl:call-template name="LineFinish"/>

 </xsl:for-each>

 <xsl:if test="not(boolean(Links/Link))">

 <xsl:text>;;</xsl:text>

 </xsl:if>

 </td>

 </tr>

 </tbody>

 </table>

 </xsl:template>

 <xsl:template name="LineFinish">

 <xsl:if test="position()!=last()">

 <xsl:text>; </xsl:text>

 </xsl:if>

 <xsl:if test="position()=last()">

 <xsl:text>;;</xsl:text>

 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

A1.2.3.4 File: ArdenKnowledge2_9.xsl

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <xsl:include href="ArdenKnowledgeExpression2_9.xsl"/>

 <xsl:template match="Knowledge">

 <div class="SlotName">knowledge:</div>

 <table>

 <tbody valign="top">

 <tr>

 <td width="50"/>

 <td width="100">type:</td>

 <td><xsl:value-of select="Type"/><xsl:text>;;</xsl:text></td>

 </tr>

 <tr>

 <td/>

 <td>data:</td>

 <td><xsl:apply-templates select="Data"/><xsl:text>;;</xsl:text></td>

 </tr>

 <xsl:if test="boolean(Priority)">

 <tr>

 <td/>

 <td>priority:</td>

 <td><xsl:value-of select="Priority"/><xsl:text>;;</xsl:text></td>

 </tr>

 </xsl:if>

 <tr>

 <td/>

Arden Syntax for Medical Logic Systems

Page 198 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <td>evoke:</td>

 <td>

 <xsl:for-each select="Evoke/*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text>;</xsl:text>

 </xsl:if>

 </xsl:for-each>

 <xsl:text>;;</xsl:text>

 </td>

 </tr>

 <tr>

 <td/>

 <td>logic:</td>

 <td>

 <xsl:apply-templates select="Logic"/>

 <xsl:text>;;</xsl:text>

 </td>

 </tr>

 <tr>

 <td/>

 <td>action:</td>

 <td>

 <xsl:for-each select="Action/*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text>;</xsl:text>

 </xsl:if>

 </xsl:for-each>

 <xsl:text>;;</xsl:text>

 </td>

 </tr>

 <xsl:if test="boolean(Urgency)">

 <tr>

 <td/>

 <td>urgency:</td>

 <td><xsl:value-of select="Urgency"/><xsl:text>;;</xsl:text></td>

 </tr>

 </xsl:if>

 </tbody>

 </table>

 </xsl:template>

 <xsl:template match="If">

 <xsl:text>if </xsl:text>

 <xsl:apply-templates/>

 <xsl:text>endif</xsl:text>

 <xsl:if test="./@aggregate='true'">

 <xsl:text> aggregate</xsl:text>

 </xsl:if>

 <xsl:text>;</xsl:text>

 </xsl:template>

 <xsl:template match="Condition">

 <xsl:if test="position()>2">

 <xsl:text>elseif </xsl:text>

 </xsl:if>

 <xsl:apply-templates/>

 <xsl:text> </xsl:text>

 </xsl:template>

 <xsl:template match="Then|Else">

 <xsl:value-of select="translate(name(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ',

'abcdefghijklmnopqrstuvwxyz')"/>

 <table>

 <thead>

 <tr>

 <th width="20"/>

 <th/>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 199

Revision date: 10/4/2023 Print date: 10/4/2023

 </tr>

 </thead>

 <tbody>

 <tr>

 <td/>

 <td>

 <xsl:apply-templates/>

 </td>

 </tr>

 </tbody>

 </table>

 </xsl:template>

 <xsl:template match="Switch">

 <table>

 <tr>

 <td colspan="3">

 <xsl:text>switch </xsl:text>

 <xsl:apply-templates select="*[1]"/>

 </td>

 </tr>

 <xsl:for-each select="*">

 <xsl:choose>

 <xsl:when test="position()=1">

 </xsl:when>

 <xsl:otherwise>

 <xsl:apply-templates select="."/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 <tr>

 <td colspan="3">

 <xsl:text>endswitch</xsl:text>

 <xsl:if test="./@aggregate='true'">

 <xsl:text> aggregate</xsl:text>

 </xsl:if>

 <xsl:text>;</xsl:text>

 </td>

 </tr>

 </table>

 </xsl:template>

 <xsl:template match="Case/Condition">

 <tr>

 <td width="20"/>

 <td colspan="2">

 <xsl:text>case </xsl:text>

 <xsl:apply-templates/>

 </td>

 </tr>

 </xsl:template>

 <xsl:template match="Case/Then">

 <tr>

 <td width="20"/>

 <td width="20"/>

 <td>

 <xsl:apply-templates/>

 </td>

 </tr>

 </xsl:template>

 <xsl:template match="Default">

 <tr>

 <td width="20"/>

 <td colspan="2">

 <xsl:text>default</xsl:text>

 </td>

 </tr>

 <tr>

 <td width="20"/>

 <td width="20"/>

 <td>

Arden Syntax for Medical Logic Systems

Page 200 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xsl:apply-templates/>

 </td>

 </tr>

 </xsl:template>

 <xsl:template match="Breakloop">

 <xsl:text>breakloop;</xsl:text>

 </xsl:template>

 <xsl:template match="Data//Call|Logic//Call">

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> := call </xsl:text>

 <xsl:apply-templates select="Assigned/*"/>

 <xsl:text>;</xsl:text>

 </xsl:template>

 <xsl:template match="Evoke/Call">

 <xsl:text>call </xsl:text>

 </xsl:template>

 <xsl:template match="Action//Call">

 <xsl:text>call </xsl:text>

 <xsl:value-of select="Name"/>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="Assigned/*"/>

 </xsl:template>

 <xsl:template match="Delay">

 <xsl:text> delay </xsl:text>

 <xsl:apply-templates select="*"/>

 </xsl:template>

 <xsl:template match="With">

 <xsl:text> with </xsl:text>

 <xsl:for-each select="*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text>, </xsl:text>

 </xsl:if>

 </xsl:for-each>

 </xsl:template>

 <xsl:template match="For">

 <xsl:text>for </xsl:text>

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> in </xsl:text>

 <xsl:apply-templates select="In/*"/>

 <xsl:text> do</xsl:text>

 <xsl:apply-templates select="Do" mode="For"/>

 <xsl:text>enddo;</xsl:text>

 </xsl:template>

 <xsl:template match="Do" mode="For">

 <table>

 <thead>

 <tr>

 <th width="20"/>

 <th/>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td/>

 <td>

 <xsl:apply-templates/>

 </td>

 </tr>

 </tbody>

 </table>

 </xsl:template>

 <xsl:template match="Assignment">

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> := </xsl:text>

 <xsl:apply-templates select="Assigned/*[1]"/>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 201

Revision date: 10/4/2023 Print date: 10/4/2023

 <xsl:if test="name(..)!='WithObject'">

 <xsl:text>;</xsl:text>

 </xsl:if>

 </xsl:template>

 <xsl:template match="TimeOf">

 <xsl:text>time of </xsl:text>

 <xsl:apply-templates select="*[1]"/>

 </xsl:template>

 <xsl:template match="ApplicabilityOf">

 <xsl:text>applicability of </xsl:text>

 <xsl:apply-templates select="*[1]"/>

 </xsl:template>

 <xsl:template match="//comment()">

 <div class="Comments">

 <pre>

 <xsl:text>/* </xsl:text>

 <xsl:value-of select="."/>

 <xsl:text> */</xsl:text>

 </pre>

 </div>

 </xsl:template>

 <xsl:template match="Value">

 <xsl:choose>

 <xsl:when test="@otype='string'">

 <xsl:text>"</xsl:text>

 <xsl:value-of select="."/>

 <xsl:text>"</xsl:text>

 </xsl:when>

 <xsl:when test="@otype='term'">

 <xsl:text>'</xsl:text>

 <xsl:value-of select="."/>

 <xsl:text>'</xsl:text>

 </xsl:when>

 <xsl:when test="@otype='null'">

 <xsl:text> null </xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="@unit"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <xsl:template match="Identifier">

 <xsl:choose>

 <xsl:when test="Index">

 <xsl:value-of select="./@var"/>

 <xsl:apply-templates select="*[1]"/>

 <xsl:if test="*[2]">

 <xsl:text>.</xsl:text>

 <xsl:apply-templates select="*[2]"/>

 </xsl:if>

 </xsl:when>

 <xsl:when test="Identifier">

 <xsl:value-of select="./@var"/>

 <xsl:text>.</xsl:text>

 <xsl:apply-templates select="*"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="@var"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <xsl:template match="Index">

 <xsl:text>[</xsl:text>

 <xsl:apply-templates select="*[1]"/>

 <xsl:text>]</xsl:text>

 </xsl:template>

 <xsl:template match="IdentifierList">

Arden Syntax for Medical Logic Systems

Page 202 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xsl:if test="name(../../../*)!='Object'"><xsl:text>(</xsl:text></xsl:if>

 <xsl:for-each select="Identifier">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text>, </xsl:text>

 </xsl:if>

 </xsl:for-each>

 <xsl:if test="name(../../../*)!='Object'"><xsl:text>)</xsl:text></xsl:if>

 </xsl:template>

 <xsl:template match="Read">

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> := read</xsl:text>

 <xsl:if test="boolean(Assigned/*[1]/Mapping)">

 <xsl:text> </xsl:text>

 <xsl:choose>

 <xsl:when test="name(Assigned/*[1])='MinimumFrom'">

 <xsl:text>minimum</xsl:text>

 </xsl:when>

 <xsl:when test="name(Assigned/*[1])='MaximumFrom'">

 <xsl:text>maximum</xsl:text>

 </xsl:when>

 <xsl:when test="name(Assigned/*[1])='LastFrom'">

 <xsl:text>last</xsl:text>

 </xsl:when>

 <xsl:when test="name(Assigned/*[1])='FirstFrom'">

 <xsl:text>first</xsl:text>

 </xsl:when>

 <xsl:when test="name(Assigned/*[1])='EarliestFrom'">

 <xsl:text>earliest</xsl:text>

 </xsl:when>

 <xsl:when test="name(Assigned/*[1])='LatestFrom'">

 <xsl:text>latest</xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="translate(name(Assigned/*[1]),

'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz')"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

 <xsl:if test="boolean(name(Assigned/*[1]/*[2])='Mapping')">

 <xsl:text> </xsl:text>

 <xsl:value-of select="Assigned/*[1]/*[1]"/>

 <xsl:text> from</xsl:text>

 </xsl:if>

 <xsl:choose>

 <xsl:when test="boolean(.//ReadWhere)"><xsl:text> ({</xsl:text></xsl:when>

 <xsl:otherwise><xsl:text> {</xsl:text></xsl:otherwise>

 </xsl:choose>

 <xsl:apply-templates select="Assigned//Mapping"/>

 <xsl:text>}</xsl:text>

 <xsl:apply-templates select="Assigned/ReadWhere"/>

 <xsl:if test="boolean(.//ReadWhere)"><xsl:text>)</xsl:text></xsl:if>

 <xsl:text>;</xsl:text>

 </xsl:template>

 <xsl:template match="ReadWhere">

 <xsl:text> where </xsl:text>

 <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="Data/Event|Data/Message|Data/Destination|Data/Interface">

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> := </xsl:text>

 <xsl:value-of select="translate(name(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ',

'abcdefghijklmnopqrstuvwxyz')"/>

 <xsl:text> {</xsl:text>

 <xsl:value-of select="Assigned/Mapping"/>

 <xsl:text>};</xsl:text>

 </xsl:template>

 <xsl:template match="Data/MLM">

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 203

Revision date: 10/4/2023 Print date: 10/4/2023

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> := mlm </xsl:text>

 <xsl:choose>

 <xsl:when test="Assigned/Term">

 <xsl:text>'</xsl:text>

 <xsl:value-of select="Assigned/Term"/>

 <xsl:text>'</xsl:text>

 <xsl:if test="Assigned/FromInstitution">

 <xsl:text> </xsl:text>

 <xsl:value-of select="Assigned/FromInstitution"/>

 </xsl:if>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>mlm_self</xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:text>;</xsl:text>

 </xsl:template>

 <xsl:template match="Data/Include">

 <xsl:text> include </xsl:text>

 <xsl:apply-templates select="*[1]"/>

 <xsl:text>;</xsl:text>

 </xsl:template>

 <xsl:template match="Argument">

 <xsl:apply-templates select="*[1]"/>

 <xsl:text>:= argument</xsl:text>

 <xsl:text>;</xsl:text>

 </xsl:template>

 <xsl:template match="Object">

 <xsl:value-of select="ObjectIdentifier/@var"/>

 <xsl:text> := object [</xsl:text>

 <xsl:for-each select="Defined/Attribute">

 <xsl:value-of select="@var"/>

 <xsl:if test="position()!=last()">

 <xsl:text>, </xsl:text>

 </xsl:if>

 </xsl:for-each>

 <xsl:text>];</xsl:text>

 </xsl:template>

 <xsl:template match="MessageAs">

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> := message as </xsl:text>

 <xsl:value-of select="@otype"/>

 <xsl:if test="boolean(Assigned/Mapping)">

 <xsl:text> {</xsl:text>

 <xsl:apply-templates select="Assigned/Mapping"/>

 <xsl:text>}</xsl:text>

 </xsl:if>

 <xsl:text>;</xsl:text>

 </xsl:template>

 <xsl:template match="DestinationAs">

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> := destination as </xsl:text>

 <xsl:value-of select="@otype"/>

 <xsl:if test="boolean(Assigned/Mapping)">

 <xsl:text> {</xsl:text>

 <xsl:apply-templates select="Assigned/Mapping"/>

 <xsl:text>}</xsl:text>

 </xsl:if>

 <xsl:text>;</xsl:text>

 </xsl:template>

 <xsl:template match="ReadAs">

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> := read as </xsl:text>

Arden Syntax for Medical Logic Systems

Page 204 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xsl:value-of select="@otype"/>

 <xsl:if test="boolean(Assigned/*[1]/Mapping)">

 <xsl:text> </xsl:text>

 <xsl:choose>

 <xsl:when test="name(Assigned/*[1])='MinimumFrom'">

 <xsl:text>minimum</xsl:text>

 </xsl:when>

 <xsl:when test="name(Assigned/*[1])='MaximumFrom'">

 <xsl:text>maximum</xsl:text>

 </xsl:when>

 <xsl:when test="name(Assigned/*[1])='LastFrom'">

 <xsl:text>last</xsl:text>

 </xsl:when>

 <xsl:when test="name(Assigned/*[1])='FirstFrom'">

 <xsl:text>first</xsl:text>

 </xsl:when>

 <xsl:when test="name(Assigned/*[1])='EarliestFrom'">

 <xsl:text>earliest</xsl:text>

 </xsl:when>

 <xsl:when test="name(Assigned/*[1])='LatestFrom'">

 <xsl:text>latest</xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="translate(name(Assigned/*[1]),

'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz')"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

 <xsl:if test="boolean(name(Assigned/*[1]/*[2])='Mapping')">

 <xsl:text> </xsl:text>

 <xsl:value-of select="Assigned/*[1]/*[1]"/>

 <xsl:text> from</xsl:text>

 </xsl:if>

 <xsl:choose>

 <xsl:when test="boolean(.//ReadWhere)"><xsl:text> ({</xsl:text></xsl:when>

 <xsl:otherwise><xsl:text> {</xsl:text></xsl:otherwise>

 </xsl:choose>

 <xsl:apply-templates select="Assigned//Mapping"/>

 <xsl:text>}</xsl:text>

 <xsl:apply-templates select="Assigned/ReadWhere"/>

 <xsl:if test="boolean(.//ReadWhere)"><xsl:text>)</xsl:text></xsl:if>

 <xsl:text>;</xsl:text>

 </xsl:template>

 <xsl:template match="PeriodicTrigger">

 <xsl:text>every </xsl:text>

 <xsl:apply-templates select="Every/*"/>

 <xsl:text> for </xsl:text>

 <xsl:apply-templates select="For/*"/>

 <xsl:text> starting </xsl:text>

 <xsl:apply-templates select="Starting/*"/>

 <xsl:if test="Until">

 <xsl:text> until </xsl:text>

 <xsl:apply-templates select="Until/*"/>

 </xsl:if>

 </xsl:template>

 <xsl:template match="Conclude">

 <xsl:text>conclude </xsl:text>

 <xsl:apply-templates/>

 <xsl:text>;</xsl:text>

 </xsl:template>

 <xsl:template match="New">

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> := new </xsl:text>

 <xsl:apply-templates select="Assigned/ObjectIdentifier/@var"/>

 <xsl:choose>

 <xsl:when test="Assigned/WithExpr">

 <xsl:text> with </xsl:text>

 <xsl:for-each select="Assigned/WithExpr/*">

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 205

Revision date: 10/4/2023 Print date: 10/4/2023

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text>, </xsl:text>

 </xsl:if>

 </xsl:for-each>

 </xsl:when>

 <xsl:when test="Assigned/WithObject">

 <xsl:text> with [</xsl:text>

 <xsl:for-each select="Assigned/WithObject/*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text>, </xsl:text>

 </xsl:if>

 </xsl:for-each>

 <xsl:text>]</xsl:text>

 </xsl:when>

 </xsl:choose>

 <xsl:text>;</xsl:text>

 </xsl:template>

 <xsl:template match="Write">

 <xsl:text>write </xsl:text>

 <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="Return">

 <xsl:text>return </xsl:text>

 <xsl:for-each select="*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text>, </xsl:text>

 </xsl:if>

 </xsl:for-each>

 </xsl:template>

 <xsl:template match="Write/At">

 <xsl:text> at </xsl:text>

 <xsl:apply-templates select="*"/>

 </xsl:template>

 <xsl:template match="Mapping">

 <xsl:value-of select="Contents"/>

 </xsl:template>

</xsl:stylesheet>

A1.2.3.5 File: ArdenKnowledgeExpression2_9.xsl

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <xsl:template name="OperatorRType1">

 <xsl:param name="node"/>

 <xsl:param name="opName"/>

 <xsl:apply-templates select="$node/*[1]"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="$opName"/>

 </xsl:template>

 <xsl:template name="OperatorLType1">

 <xsl:param name="node"/>

 <xsl:param name="opName"/>

 <xsl:value-of select="$opName"/>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="$node/*[1]"/>

 </xsl:template>

 <xsl:template name="OperatorType2">

 <xsl:param name="node"/>

 <xsl:param name="opName"/>

 <xsl:apply-templates select="$node/*[1]"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="$opName"/>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="$node/*[2]"/>

Arden Syntax for Medical Logic Systems

Page 206 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 </xsl:template>

 <xsl:template name="OperatorType22">

 <xsl:param name="node"/>

 <xsl:param name="opName1"/>

 <xsl:param name="opName2"/>

 <xsl:value-of select="$opName1"/>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="$node/*[1]"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="$opName2"/>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="$node/*[2]"/>

 </xsl:template>

 <xsl:template name="OperatorType3">

 <xsl:param name="node"/>

 <xsl:param name="opName1"/>

 <xsl:param name="opName2"/>

 <xsl:param name="opName3"/>

 <xsl:value-of select="$opName1"/>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="$opName2"/>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="*[2]"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="$opName3"/>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="*[3]"/>

 </xsl:template>

 <xsl:template name="OperatorType33">

 <xsl:param name="node"/>

 <xsl:param name="opName1"/>

 <xsl:param name="opName2"/>

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="$opName1"/>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="*[2]"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="$opName2"/>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="*[3]"/>

 </xsl:template>

 <xsl:template name="ComparisonOpeartorRType1">

 <xsl:param name="node"/>

 <xsl:param name="opName"/>

 <xsl:apply-templates select="$node/*[1]"/>

 <xsl:choose>

 <xsl:when test="boolean($node/@type)=false">

 <xsl:choose>

 <xsl:when test="starts-with(name(.), 'Is')">

 <xsl:text> is</xsl:text>

 </xsl:when>

 <xsl:when test="starts-with(name(.), 'Occur')">

 <xsl:text> occurred</xsl:text>

 </xsl:when>

 </xsl:choose>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text> </xsl:text>

 <xsl:value-of select="$node/@type"/>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:if test="name(parent::*)='Not'">

 <xsl:text> not</xsl:text>

 </xsl:if>

 <xsl:text> </xsl:text>

 <xsl:value-of select="$opName"/>

 </xsl:template>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 207

Revision date: 10/4/2023 Print date: 10/4/2023

 <xsl:template name="ComparisonOpeartorType2">

 <xsl:param name="node"/>

 <xsl:param name="opName"/>

 <xsl:apply-templates select="$node/*[1]"/>

 <xsl:choose>

 <xsl:when test="boolean($node/@type)=false">

 <xsl:choose>

 <xsl:when test="starts-with(name(.), 'Is')">

 <xsl:text> is</xsl:text>

 </xsl:when>

 <xsl:when test="starts-with(name(.), 'Occur')">

 <xsl:text> occurred</xsl:text>

 </xsl:when>

 </xsl:choose>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text> </xsl:text>

 <xsl:value-of select="$node/@type"/>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:if test="name(parent::*)='Not'">

 <xsl:text> not</xsl:text>

 </xsl:if>

 <xsl:text> </xsl:text>

 <xsl:value-of select="$opName"/>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="$node/*[2]"/>

 </xsl:template>

 <xsl:template name="ComparisonOpeartorType3">

 <xsl:param name="node"/>

 <xsl:param name="opName"/>

 <xsl:apply-templates select="$node/*[1]"/>

 <xsl:choose>

 <xsl:when test="boolean($node/@type)=false">

 <xsl:choose>

 <xsl:when test="starts-with(name(.), 'Is')">

 <xsl:text> is</xsl:text>

 </xsl:when>

 <xsl:when test="starts-with(name(.), 'Occur')">

 <xsl:text> occurred</xsl:text>

 </xsl:when>

 </xsl:choose>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text> </xsl:text>

 <xsl:value-of select="$node/@type"/>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:if test="name(parent::*)='Not'">

 <xsl:text> not</xsl:text>

 </xsl:if>

 <xsl:text> within </xsl:text>

 <xsl:apply-templates select="$node/*[2]"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="$opName"/>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="$node/*[3]"/>

 </xsl:template>

 <!-- 9.2 List Operators -->

 <xsl:template match="List">

 <xsl:text>(</xsl:text>

 <xsl:for-each select="*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text>, </xsl:text>

 </xsl:if>

 </xsl:for-each>

 <xsl:text>)</xsl:text>

 </xsl:template>

 <xsl:template match="Set">

Arden Syntax for Medical Logic Systems

Page 208 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xsl:choose>

 <xsl:when test="count(*)=1">

 <xsl:text>, </xsl:text>

 <xsl:apply-templates select="*"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:for-each select="*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text>, </xsl:text>

 </xsl:if>

 </xsl:for-each>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <xsl:template match="Merge">

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'merge'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="MergeUsing">

 <xsl:call-template name="OperatorType33">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'merge'"/>

 <xsl:with-param name="opName2" select="'using'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Sort">

 <xsl:text> sort</xsl:text>

 <xsl:if test="boolean(@order)">

 <xsl:text> </xsl:text>

 <xsl:value-of select="@order"/>

 </xsl:if>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="*[1]"/>

 </xsl:template>

 <xsl:template match="SortUsing">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'sort'"/>

 <xsl:with-param name="opName2" select="'using'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="AddTo">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'add'"/>

 <xsl:with-param name="opName2" select="'to'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="AddToAt">

 <xsl:call-template name="OperatorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'add'"/>

 <xsl:with-param name="opName2" select="'to'"/>

 <xsl:with-param name="opName3" select="'at'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="RemoveFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'remove'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.3 Where Operator -->

 <xsl:template match="Where">

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 209

Revision date: 10/4/2023 Print date: 10/4/2023

 <xsl:with-param name="opName" select="'where'"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.4 Logical Operators -->

 <xsl:template match="Or">

 <xsl:text>(</xsl:text>

 <xsl:for-each select="*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text> or </xsl:text>

 </xsl:if>

 </xsl:for-each>

 <xsl:text>)</xsl:text>

 </xsl:template>

 <xsl:template match="And">

 <xsl:text>(</xsl:text>

 <xsl:for-each select="*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text> and </xsl:text>

 </xsl:if>

 </xsl:for-each>

 <xsl:text>)</xsl:text>

 </xsl:template>

 <xsl:template match="Not">

 <xsl:choose>

 <xsl:when test="contains(name(*),'Is')">

 <xsl:apply-templates select="*"/>

 </xsl:when>

 <xsl:when test="contains(name(*),'Occur')">

 <xsl:apply-templates select="*"/>

 </xsl:when>

 <xsl:when test="name(*)='EQ'">

 <xsl:apply-templates select="*"/>

 </xsl:when>

 <xsl:when test="name(*)='NE'">

 <xsl:apply-templates select="*"/>

 </xsl:when>

 <xsl:when test="name(*)='In'">

 <xsl:apply-templates select="*"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>not </xsl:text>

 <xsl:apply-templates select="*"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <!-- 9.5 Simple Comparison Operators -->

 <xsl:template match="EQ">

 <xsl:apply-templates select="*[1]"/>

 <xsl:choose>

 <xsl:when test="name(parent::*)='Not'">

 <xsl:text> <> </xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text> = </xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:apply-templates select="*[2]"/>

 </xsl:template>

 <xsl:template match="NE">

 <xsl:apply-templates select="*[1]"/>

 <xsl:choose>

 <xsl:when test="name(parent::*)='Not'">

 <xsl:text> = </xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text> <> </xsl:text>

 </xsl:otherwise>

 </xsl:choose>

Arden Syntax for Medical Logic Systems

Page 210 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xsl:apply-templates select="*[2]"/>

 </xsl:template>

 <xsl:template match="LT">

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'<'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="LE">

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'<='"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="GT">

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'>'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="GE">

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'>='"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.6 Is Comparison Operators -->

 <xsl:template match="IsEQ">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'equal'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsLT">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'less than'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsGT">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'greater than'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsLE">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'less than or equal'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsGE">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'greater than or equal'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsWithinTo">

 <xsl:call-template name="ComparisonOpeartorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'to'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsWithinPreceding">

 <xsl:call-template name="ComparisonOpeartorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'preceding'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsWithinFollowing">

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 211

Revision date: 10/4/2023 Print date: 10/4/2023

 <xsl:call-template name="ComparisonOpeartorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'following'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsWithinSurrounding">

 <xsl:call-template name="ComparisonOpeartorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'surrounding'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsWithinPast">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'within past'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsWithinSameDayAs">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'within same day as'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsBefore">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'before'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsAfter">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'after'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsIn">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'in'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsPresent">

 <xsl:call-template name="ComparisonOpeartorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'present'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsNull">

 <xsl:call-template name="ComparisonOpeartorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'null'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsBoolean">

 <xsl:call-template name="ComparisonOpeartorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'boolean'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsNumber">

 <xsl:call-template name="ComparisonOpeartorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'number'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsString">

 <xsl:call-template name="ComparisonOpeartorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'string'"/>

 </xsl:call-template>

Arden Syntax for Medical Logic Systems

Page 212 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 </xsl:template>

 <xsl:template match="IsTime">

 <xsl:call-template name="ComparisonOpeartorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'time'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsTimeOfDay">

 <xsl:call-template name="ComparisonOpeartorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'time of day'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsDuration">

 <xsl:call-template name="ComparisonOpeartorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'duration'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsList">

 <xsl:call-template name="ComparisonOpeartorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'list'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="In">

 <xsl:apply-templates select="*[1]"/>

 <xsl:if test="name(parent::*)='Not'">

 <xsl:text> not</xsl:text>

 </xsl:if>

 <xsl:text> in </xsl:text>

 <xsl:apply-templates select="*[2]"/>

 </xsl:template>

 <xsl:template match="IsObject">

 <xsl:apply-templates select="*[1]"/>

 <xsl:choose>

 <xsl:when test="boolean(@type)=false">

 <xsl:text> is</xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text> </xsl:text>

 <xsl:value-of select="@type"/>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:if test="name(parent::*)='Not'">

 <xsl:text> not</xsl:text>

 </xsl:if>

 <xsl:choose>

 <xsl:when test="@dtype">

 <xsl:text> </xsl:text>

 <xsl:value-of select="@dtype"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text> object</xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <xsl:template match="IsFuzzy">

 <xsl:call-template name="ComparisonOpeartorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'fuzzy'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IsCrisp">

 <xsl:call-template name="ComparisonOpeartorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'crisp'"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.7 Occur Comparison Operators -->

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 213

Revision date: 10/4/2023 Print date: 10/4/2023

 <xsl:template match="OccurEQ">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'equal'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="OccurWithinTo">

 <xsl:call-template name="ComparisonOpeartorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'to'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="OccurWithinPreceding">

 <xsl:call-template name="ComparisonOpeartorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'preceding'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="OccurWithinFollowing">

 <xsl:call-template name="ComparisonOpeartorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'following'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="OccurWithinSurrounding">

 <xsl:call-template name="ComparisonOpeartorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'surrounding'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="OccurWithinPast">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'within past'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="OccurWithinSameDayAs">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'within same day as'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="OccurBefore">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'before'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="OccurAfter">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'after'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="OccurAt">

 <xsl:call-template name="ComparisonOpeartorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'at'"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.8 String Operators -->

 <xsl:template match="Concat">

 <xsl:for-each select="*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text> || </xsl:text>

 </xsl:if>

 </xsl:for-each>

 </xsl:template>

 <xsl:template match="FormattedWith">

Arden Syntax for Medical Logic Systems

Page 214 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'formatted with'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="String">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'string'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="MatchesPattern">

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'matches pattern'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Length">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'length of'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Uppercase">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'uppercase'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Lowercase">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'lowercase'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Trim">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'trim'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="LeftTrim">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'trim left'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="RightTrim">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'trim right'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="FindString">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'find'"/>

 <xsl:with-param name="opName2" select="'in string'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="FindStringStartingAt">

 <xsl:text>find </xsl:text>

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> in string </xsl:text>

 <xsl:apply-templates select="*[2]"/>

 <xsl:text> starting at </xsl:text>

 <xsl:apply-templates select="*[3]"/>

 </xsl:template>

 <xsl:template match="SubstringCharactersFrom">

 <xsl:call-template name="OperatorType22">

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 215

Revision date: 10/4/2023 Print date: 10/4/2023

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'substring'"/>

 <xsl:with-param name="opName2" select="'characters from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="SubstringCharactersStartingAtFrom">

 <xsl:text>substring </xsl:text>

 <xsl:apply-templates select="*[1]"/>

 <xsl:text> characters starting at </xsl:text>

 <xsl:apply-templates select="*[2]"/>

 <xsl:text> from </xsl:text>

 <xsl:apply-templates select="*[3]"/>

 </xsl:template>

 <xsl:template match="Localized">

 <xsl:text>localized '</xsl:text>

 <xsl:apply-templates select="*[1]"/>

 <xsl:text>'</xsl:text>

 </xsl:template>

 <xsl:template match="LocalizedBy">

 <xsl:text>localized '</xsl:text>

 <xsl:apply-templates select="*[1]"/>

 <xsl:text>' by </xsl:text>

 <xsl:apply-templates select="*[2]"/>

 </xsl:template>

 <!-- 9.9 Arithmetic Operators -->

 <xsl:template match="Add">

 <xsl:if test="name(parent::*)='Multiply' or name(parent::*)='Divide'">

 <xsl:text>(</xsl:text>

 </xsl:if>

 <xsl:choose>

 <xsl:when test="count(*)=1">

 <xsl:text>(+</xsl:text>

 <xsl:apply-templates select="*"/>

 <xsl:text>)</xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:for-each select="*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text> + </xsl:text>

 </xsl:if>

 </xsl:for-each>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:if test="name(parent::*)='Multiply' or name(parent::*)='Divide'">

 <xsl:text>)</xsl:text>

 </xsl:if>

 </xsl:template>

 <xsl:template match="Plus">

 <xsl:text>(+</xsl:text>

 <xsl:apply-templates select="*[1]"/>

 <xsl:text>)</xsl:text>

 </xsl:template>

 <xsl:template match="Subtract">

 <xsl:if test="name(parent::*)='Multiply' or name(parent::*)='Divide'">

 <xsl:text>(</xsl:text>

 </xsl:if>

 <xsl:choose>

 <xsl:when test="count(*)=1">

 <xsl:text>(-</xsl:text>

 <xsl:apply-templates select="*"/>

 <xsl:text>)</xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:for-each select="*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text> - </xsl:text>

 </xsl:if>

 </xsl:for-each>

Arden Syntax for Medical Logic Systems

Page 216 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 </xsl:otherwise>

 </xsl:choose>

 <xsl:if test="name(parent::*)='Multiply' or name(parent::*)='Divide'">

 <xsl:text>)</xsl:text>

 </xsl:if>

 </xsl:template>

 <xsl:template match="Minus">

 <xsl:text>(-</xsl:text>

 <xsl:apply-templates select="*[1]"/>

 <xsl:text>)</xsl:text>

 </xsl:template>

 <xsl:template match="Multiply">

 <xsl:if test="name(parent::*)='Multiply' or name(parent::*)='Divide'">

 <xsl:text>(</xsl:text>

 </xsl:if>

 <xsl:for-each select="*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text> * </xsl:text>

 </xsl:if>

 </xsl:for-each>

 <xsl:if test="name(parent::*)='Multiply' or name(parent::*)='Divide'">

 <xsl:text>)</xsl:text>

 </xsl:if>

 </xsl:template>

 <xsl:template match="Divide">

 <xsl:if test="name(parent::*)='Multiply' or name(parent::*)='Divide'">

 <xsl:text>(</xsl:text>

 </xsl:if>

 <xsl:for-each select="*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text> / </xsl:text>

 </xsl:if>

 </xsl:for-each>

 <xsl:if test="name(parent::*)='Multiply' or name(parent::*)='Divide'">

 <xsl:text>)</xsl:text>

 </xsl:if>

 </xsl:template>

 <xsl:template match="Power">

 <xsl:for-each select="*">

 <xsl:apply-templates select="."/>

 <xsl:if test="position()!=last()">

 <xsl:text> ** </xsl:text>

 </xsl:if>

 </xsl:for-each>

 </xsl:template>

 <!-- 9.10 Temporal Operators -->

 <xsl:template match="After">

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'after'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Before">

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'before'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Ago">

 <xsl:call-template name="OperatorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'ago'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="From">

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'from'"/>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 217

Revision date: 10/4/2023 Print date: 10/4/2023

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="TimeOfDay">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'time of day of'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="DayOfWeek">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'day of week of'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="ExtractYear">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'extract year'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="ExtractMonth">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'extract month'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="ExtractDay">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'extract day'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="ExtractHour">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'extract hour'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="ExtractMinute">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'extract minute'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="ExtractSecond">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'extract seconde'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="ReplaceYearWith">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'replace year of'"/>

 <xsl:with-param name="opName2" select="'with'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="ReplaceMonthWith">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'replace month of'"/>

 <xsl:with-param name="opName2" select="'with'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="ReplaceDayWith">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'replace day of'"/>

 <xsl:with-param name="opName2" select="'with'"/>

 </xsl:call-template>

Arden Syntax for Medical Logic Systems

Page 218 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 </xsl:template>

 <xsl:template match="ReplaceHourWith">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'replace hour of'"/>

 <xsl:with-param name="opName2" select="'with'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="ReplaceMinuteWith">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'replace minute of'"/>

 <xsl:with-param name="opName2" select="'with'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="ReplaceSecondWith">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'replace second of'"/>

 <xsl:with-param name="opName2" select="'with'"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.11 Duration Operators -->

 <xsl:template match="Year">

 <xsl:call-template name="OperatorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'year'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Month">

 <xsl:call-template name="OperatorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'month'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Week">

 <xsl:call-template name="OperatorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'week'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Day">

 <xsl:call-template name="OperatorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'day'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Hour">

 <xsl:call-template name="OperatorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'hour'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Minute">

 <xsl:call-template name="OperatorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'minute'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Second">

 <xsl:call-template name="OperatorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'second'"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.12 Aggregation Operators -->

 <xsl:template match="Count">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'count'"/>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 219

Revision date: 10/4/2023 Print date: 10/4/2023

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Exist">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'exist'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Average">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'average'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Median">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'median'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Sum">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'sum'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Stddev">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'stddev'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Variance">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'variance'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Minimum">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'minimum'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="MinimumUsing">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'minimum'"/>

 <xsl:with-param name="opName2" select="'using'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Maximum">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'maximum'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="MaximumUsing">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'maximum'"/>

 <xsl:with-param name="opName2" select="'using'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Last">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'last'"/>

 </xsl:call-template>

 </xsl:template>

Arden Syntax for Medical Logic Systems

Page 220 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xsl:template match="First">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'first'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Any">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'any'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="All">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'all'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="No">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'no'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Latest">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'latest'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="LatestUsing">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'latest'"/>

 <xsl:with-param name="opName2" select="'using'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Earliest">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'earliest'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="EarliestUsing">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'earliest'"/>

 <xsl:with-param name="opName2" select="'using'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Element">

 <xsl:apply-templates select="*[1]"/>

 <xsl:text>[</xsl:text>

 <xsl:apply-templates select="*[2]"/>

 <xsl:text>]</xsl:text>

 </xsl:template>

 <xsl:template match="ExtractCharacters">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'extract characters'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Seqto">

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'seqto'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Reverse">

 <xsl:call-template name="OperatorLType1">

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 221

Revision date: 10/4/2023 Print date: 10/4/2023

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'reverse'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IndexLatest">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'index latest'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IndexEarliest">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'index earliest'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IndexMinimum">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'index minimum'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IndexMaximum">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'index maximum'"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.13 Query Aggregation Operators -->

 <xsl:template match="NearestFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'nearest'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IndexNearestFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'index nearest'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IndexOfFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'index of'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="AtLeastFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'at least'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="AtMostFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'at most'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Slope">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'slope'"/>

 </xsl:call-template>

 </xsl:template>

Arden Syntax for Medical Logic Systems

Page 222 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <!-- 9.14 Transformation Operators -->

 <xsl:template match="MinimumFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'minimum'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="MinimumFromUsing">

 <xsl:call-template name="OperatorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'minimum'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 <xsl:with-param name="opName3" select="'using'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="MaximumFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'maximum'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="MaximumFromUsing">

 <xsl:call-template name="OperatorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'maximum'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 <xsl:with-param name="opName3" select="'using'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="FirstFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'first'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="LastFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'last'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="SublistElementFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'sublist'"/>

 <xsl:with-param name="opName2" select="'element from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="SublistElementStartingAtFrom">

 <xsl:call-template name="OperatorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'sublist'"/>

 <xsl:with-param name="opName2" select="'element starting at'"/>

 <xsl:with-param name="opName3" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Increase">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'increase'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Decrease">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'decrease'"/>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 223

Revision date: 10/4/2023 Print date: 10/4/2023

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="PcntIncrease">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'% increase'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="PcntDecrease">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'% decrease'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="EarliestFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'earliest'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="EarliestFromUsing">

 <xsl:call-template name="OperatorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'earliest'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 <xsl:with-param name="opName3" select="'using'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="LatestFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'latest'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IndexMinimumFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'index minimum'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="LatestFromUsing">

 <xsl:call-template name="OperatorType3">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'latest'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 <xsl:with-param name="opName3" select="'using'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="IndexMaximumFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'index maximum'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.15 Query Transformation Operator -->

 <xsl:template match="Interval">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'interval'"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.16 Numeric Function Operators -->

 <xsl:template match="Arccos">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'arccos'"/>

Arden Syntax for Medical Logic Systems

Page 224 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Arcsin">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'arcsin'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Arctan">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'arctan'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Cosine">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'cosine'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Sine">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'sine'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Tangent">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'tangent'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Exp">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'exp'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Log">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'log'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Log10">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'log10'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Int">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'int'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Floor">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'floor'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Ceiling">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'ceiling'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Truncate">

 <xsl:call-template name="OperatorLType1">

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 225

Revision date: 10/4/2023 Print date: 10/4/2023

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'truncate'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Round">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'round'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Abs">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'abs'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Sqrt">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'sqrt'"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.17 Time Function Operator -->

 <xsl:template match="Time">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'time of'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Attime">

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'attime'"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.18 Object Operator -->

 <xsl:template match="Clone">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'clone of'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="ExtractAttributeNames">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'extract attribute names'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="AttributeFrom">

 <xsl:call-template name="OperatorType22">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName1" select="'attribute'"/>

 <xsl:with-param name="opName2" select="'from'"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.19 Fuzzy operators -->

 <xsl:template match="FuzzySet">

 <xsl:text>fuzzy set </xsl:text>

 <xsl:for-each select="*">

 <xsl:text>(</xsl:text>

 <xsl:apply-templates select="*[1]"/>

 <xsl:text>, </xsl:text>

 <xsl:apply-templates select="*[2]"/>

 <xsl:text>)</xsl:text>

 <xsl:if test="position()!=last()">

 <xsl:text>, </xsl:text>

 </xsl:if>

 </xsl:for-each>

 </xsl:template>

 <xsl:template match="FuzzifiedBy">

Arden Syntax for Medical Logic Systems

Page 226 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <xsl:call-template name="OperatorType2">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'fuzzified by'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Defuzzified">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'defuzzified'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="Applicability">

 <xsl:call-template name="OperatorLType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'applicability of'"/>

 </xsl:call-template>

 </xsl:template>

 <!-- 9.20 Type Conversion operators -->

 <xsl:template match="AsNumber">

 <xsl:call-template name="OperatorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'as number'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="AsString">

 <xsl:call-template name="OperatorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'as string'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="AsTime">

 <xsl:call-template name="OperatorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'as time'"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template match="AsTruthValue">

 <xsl:call-template name="OperatorRType1">

 <xsl:with-param name="node" select="."/>

 <xsl:with-param name="opName" select="'as truth value'"/>

 </xsl:call-template>

 </xsl:template>

</xsl:stylesheet>

A1.2.3.6 File: ArdenResources2_9.xsl

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <xsl:template match="Resources">

 <div class="SlotName">resources:</div>

 <table>

 <tbody valign="top">

 <tr>

 <td width="50"/>

 <td width="100">default:</td>

 <td colspan="2"><xsl:value-of select="Default"/><xsl:text>;;</xsl:text></td>

 </tr>

 <xsl:for-each select="Language">

 <xsl:choose>

 <xsl:when test="Terms">

 <tr>

 <td/>

 <td>language:</td>

 <td><xsl:value-of select="@code"/></td>

 <td/>

 </tr>

 <xsl:for-each select="Terms">

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 227

Revision date: 10/4/2023 Print date: 10/4/2023

 <tr>

 <td colspan="2"/>

 <td>

 <xsl:text>'</xsl:text><xsl:value-of

select="@key"/><xsl:text>': "</xsl:text><xsl:value-of select="."/><xsl:text>"</xsl:text>

 <xsl:call-template name="LineFinish"/>

 </td>

 <td/>

 </tr>

 </xsl:for-each>

 </xsl:when>

 <xsl:otherwise>

 <tr>

 <td/>

 <td>language:</td>

 <td><xsl:value-of select="@code"/></td>

 <td><xsl:text>;;</xsl:text></td>

 </tr>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </tbody>

 </table>

 </xsl:template>

</xsl:stylesheet>

A1.2.4 Example MLM

Below is an MLM expressed in ArdenML. The transform described above can be used to render it in ASCII text.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href=" Arden2_9.xsl"?>

<ArdenMLs xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="

Arden2_9.xsd">

 <ArdenML>

 <Maintenance>

 <Title>Rule 1-HgbA1c Timing</Title>

 <MLMName>HgbA1c_Timing</MLMName>

 <Arden>Version 2.9</Arden>

 <Version>1.00</Version>

 <Institution>

 <Name_of_Institution>Intermountain Healthcare</Name_of_Institution>

 </Institution>

 <Author>

 <Person>

 <FirstName>Peter</FirstName>

 <SurName>Haug</SurName>

 <Contact>

 <E-mail>Peter.Haug@imail.org</E-mail>

 </Contact>

 </Person>

 </Author>

 <Specialist>

 <Person>

 <FirstName>Peter</FirstName>

 <SurName>Haug</SurName>

 <Contact>

 <E-mail>Peter.Haug@imail.org</E-mail>

 </Contact>

 </Person>

 </Specialist>

 <Date>2011-02-14</Date>

 <Validation>testing</Validation>

 </Maintenance>

 <Library>

 <Purpose>Alert for HgbA1c if greater than 6 months.</Purpose>

Arden Syntax for Medical Logic Systems

Page 228 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 <Explanation>This MLM will send an alert if the patient is a diabetic (diabetes and

problem list or discharge diagnoses) and no HgbA1c is recorded within the last 6

months.</Explanation>

 <Keywords>

 <Keyword>diabetes</Keyword>

 <Keyword>HgbA1c</Keyword>

 </Keywords>

 </Library>

 <Knowledge>

 <Type>data_driven</Type>

 <Data>

 <Object>

 <ObjectIdentifier var="Problem_List_Problem"/>

 <Defined>

 <Attribute var="Problem" otype="string"/>

 <Attribute var="Recorder" otype="string"/>

 </Defined>

 </Object>

 <ReadAs otype="Problem_List_Problem">

 <Identifier var="Problem_List" otype="Problem_List_Problem"/>

 <Assigned>

 <Mapping>

 <Contents>select problem, recorded_by from Problem_List_Table where

problem='Diabetes'</Contents>

 <XForms>

 <input>

 <label>Problem</label>

 </input>

 <input>

 <label>Recorder</label>

 </input>

 </XForms>

 </Mapping>

 </Assigned>

 </ReadAs>

 <Object>

 <ObjectIdentifier var="Patient_Dx_Object"/>

 <Defined>

 <Attribute var="Dx" otype="number"/>

 </Defined>

 </Object>

 <ReadAs otype="Patient_Dx_Object">

 <Identifier var="Diabetic_Dx" otype="Patient_Dx_Object"/>

 <Assigned>

 <Mapping>

 <Contents>ICD_discharge_Diagnoses</Contents>

 <XForms>

 <input>

 <label>Dx</label>

 </input>

 </XForms>

 </Mapping>

 </Assigned>

 </ReadAs>

 <Object>

 <ObjectIdentifier var="Chem_Lab_Object"/>

 <Defined>

 <Attribute var="Measurement_Name" otype="string"/>

 <Attribute var="LOINC_Code" otype="string"/>

 <Attribute var="Measurement_Units" otype="string"/>

 <Attribute var="Value" otype="number"/>

 </Defined>

 </Object>

 <ReadAs otype="Chem_Lab_Object">

 <Identifier var="Last_HgbA1c" otype="Chem_Lab_Object"/>

 <Assigned>

 <Latest>

 <Mapping>

 <Contents>select measurement, LOINC, units, value from

Laboratory_Table where measurement ='HgbA1c'</Contents>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 229

Revision date: 10/4/2023 Print date: 10/4/2023

 <XForms>

 <input>

 <label>Measurement Name</label>

 </input>

 <input>

 <label>LOINC Code</label>

 </input>

 <input>

 <label>Measurement Units</label>

 </input>

 <input>

 <label>Value</label>

 </input>

 </XForms>

 </Mapping>

 </Latest>

 </Assigned>

 </ReadAs>

 <Event>

 <Identifier var="Registration_Event" otype="number"/>

 <Assigned>

 <Mapping>

 <Contents>registration of patient</Contents>

 </Mapping>

 </Assigned>

 </Event>

 </Data>

 <Evoke>

 <Identifier var="Registration_Event" otype="number"/>

 </Evoke>

 <Logic>

 <If>

 <Condition>

 <Or>

 <IsIn type="is">

 <Identifier var="Diabetic_Dx" otype="Problem_Dx_Object">

 <Identifier var="Dx" otype="number"/>

 </Identifier>

 <List>

 <Value otype="number">250</Value>

 <Value otype="number">250.0</Value>

 <Value otype="number">250.1</Value>

 <Value otype="number">250.2</Value>

 <Value otype="number">250.3</Value>

 <Value otype="number">250.4</Value>

 <Value otype="number">250.5</Value>

 <Value otype="number">250.6</Value>

 <Value otype="number">250.7</Value>

 <Value otype="number">250.8</Value>

 <Value otype="number">250.9</Value>

 </List>

 </IsIn>

 <And>

 <Exist>

 <Identifier var="Problem_List" otype="Problem_List_Object"/>

 </Exist>

 <IsIn type="is">

 <Value otype="string">Diabetes</Value>

 <Identifier var="Problem_List" otype="Problem_List_Problem">

 <Identifier var="Problem" otype="string"/>

 </Identifier>

 </IsIn>

 </And>

 </Or>

 </Condition>

 <Then>

 <Assignment>

 <Identifier var="Diabetes_Present" otype="boolean"/>

 <Assigned>

 <Value otype="boolean">true</Value>

Arden Syntax for Medical Logic Systems

Page 230 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

 </Assigned>

 </Assignment>

 </Then>

 </If>

 <If>

 <Condition>

 <And>

 <Identifier var="Diabetes_Present" otype="boolean"/>

 <Exist>

 <Identifier var="Last_HgbA1c" otype="Chem_Lab_Object"/>

 </Exist>

 <Not>

 <OccurWithinPast type="occurred">

 <Identifier var="Last_HgbA1c" otype="Chem_Lab_Object"/>

 <Value otype="duration" unit="months">6</Value>

 </OccurWithinPast>

 </Not>

 </And>

 </Condition>

 <Then>

 <Conclude>

 <Value otype="boolean">true</Value>

 </Conclude>

 </Then>

 </If>

 <Conclude>

 <Value otype="boolean">false</Value>

 </Conclude>

 </Logic>

 <Action>

 <Write>

 <Value otype="string">Patient is a diabetic with no HgbA1c in last 6 months.

Please order one.</Value>

 </Write>

 </Action>

 </Knowledge>

 <Resources>

 <Default>en_US</Default>

 <Language code="en_US"/>

 </Resources>

 </ArdenML>

</ArdenMLs>

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 231

Revision date: 10/4/2023 Print date: 10/4/2023

A2 RESERVED WORDS

Listed here in alphabetic order are all the reserved words. None of these words may be used as variable names.

Abs

action

add

after

aggregate

ago

alert

all

and

any

applicability

arccos

arcsin

arctan

arden

are

aretrue

argument

as

at

attribute

author

average

avg

be

before

Boolean

breakloop

by

call

case

ceiling

characters

citations

conclude

cos

cosine

count

clone

crisp

currenttime

data

data_driven

data-driven

date

day

days

decrease

default

defuzzified

delay

destination

do

duration

earliest

elements

else

elseif

enddo

endif

endswitch

end

eq

equal

event

eventtime

every

evoke

exist

exists

exp

expired

explanation

extract

false

filename

find

first

floor

following

for

formatted

friday

from

fuzzified

fuzzy

ge

greater

gt

hour

hours

if

in

include

increase

index

institution

int

interface

interval

is

istrue

it

keywords

knowledge

language

last

latest

le

least

left

length

less

let

library

linguistic

links

list

localized

log

log10

logic

lowercase

lt

maintenance

matches

max

maximum

median

merge

message

min

minimum

minute

minutes

mlm

Arden Syntax for Medical Logic Systems

Page 232 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 10/04/2023 Print date: 10/4/2023

mlmname

mlm_self

month

monday

months

most

names

ne

nearest

new

no

not

now

null

number

object

occur

occurred

occurs

of

or

past

pattern

percent

preceding

present

priority

production

purpose

read

refute

remove

replace

research

resources

return

reverse

right

round

same

saturday

second

seconds

seqto

set

sin

sine

slope

sort

specialist

sqrt

starting

stddev

string

substring

sublist

sum

sunday

support

surrounding

switch

tan

tangent

testing

than

the

then

they

thursday

time

title

to

today

tomorrow

triggertime

trim

true

truncate

truth

tuesday

type

unique

until

uppercase

urgency

using

validation

value

variable

variance

version

was

wednesday

week

weeks

were

where

while

with

within

write

year

years

The following identifiers are reserved for future use:

union intersect excluding citation select

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 233

Revision date: 4/25/2023 Print date: 10/4/2023

A3 SPECIAL SYMBOLS

Listed here are all the special symbols.

|| := , = >=

> <= < { (

[- <> % +

})] ; #

/ * ** ;; :

/* */ // ‘ "

Arden Syntax for Medical Logic Systems

Page 234 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

A4 OPERATOR PRECEDENCE AND ASSOCIATIVITY

A4.1

The operators for the structured slots are shown here grouped by precedence. Groups are separated by

horizontal lines. Within groups, operators have equal precedence. Groups are arranged from lowest to

highest precedence.

A4.2

Synonyms are listed on the same line, separated by º. The symbol [of] means that the word of is optional,

and does not affect the logic of the operator. The symbol [in] means that the work in is optional, and does

not affect the logic of the operator.

A4.3

The position of the arguments relative to the operator is indicated by the ellipsis The operator’s

associativity is shown in italics after each operator. Some operators have both a unary form (one argument)

and a binary form (two arguments); each form is listed separately.

 ... fuzzified by ... (non-associative)

 Fuzzy Set ... (right-associative)

 ... [...] (non-associative)

 , ... (non-associative)

 ... , ... (left-associative)

 ... merge ... (left-associative)

 ... merge ... using … (left-associative)

 sort ... (non-associative)

 sort ... using …(non-associative)

 add ... to ... (non-associative)

 add ... to ... at … (non-associative)

 remove ... from ... (non-associative)

 ... where ... (non-associative)

 ... or ... (left-associative)

 ... and ... (left-associative)

 not ... (non-associative)

 ... = ... º ... eq ... º ... is equal ... (non-associative)

 ... <> ... º ... ne ... º ... is not equal ... (non-associative)

 ... < ... º ... lt ... º ... is less than ... º ... is not greater than or equal ... (non-associative)

 ... <= ... º ... le ... º ... is less than or equal ... º ... is not greater than ... (non-associative)

 ... > ... º ... gt ... º ... is greater than ... º ... is not less than or equal ... (non-associative)

 ... >= ... º ... ge ... º ... is greater than or equal ... º ... is not less than ... (non-associative)

 ... is within ... to ... (non-associative)

 ... is not within ... to ... (non-associative)

 ... is within ... preceding ... (non-associative)

 ... is not within ... preceding ... (non-associative)

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 235

Revision date: 4/25/2023 Print date: 10/4/2023

 ... is within ... following ... (non-associative) ... is not within ... following ... (non-associative)

 ... is within ... surrounding ... (non-associative)

 ... is not within ... surrounding ... (non-associative)

 ... is within past ... (non-associative)

 ... is not within past ... (non-associative)

 ... is within same day as ... (non-associative)

 ... is not within same day as ... (non-associative)

 ... is before ... (non-associative)

 ... is not before ... (non-associative)

 ... is after ... (non-associative)

 ... is not after ... (non-associative)

 ... occur equal ... º … occur at … (non-associative)

 ... occur within ... to ... (non-associative)

 ... occur not within ... to ... (non-associative)

 ... occur within ... preceding ... (non-associative)

 ... occur not within ... preceding ... (non-associative)

 ... occur within ... following ... (non-associative)

 ... occur not within ... following ... (non-associative)

 ... occur within ... surrounding ... (non-associative)

 ... occur not within ... surrounding ... (non-associative)

 ... occur within past ... (non-associative)

 ... occur not within past ... (non-associative)

 ... occur within same day as ... (non-associative)

 ... occur not within same day as ... (non-associative)

 ... occur before ... (non-associative)

 ... occur not before ... (non-associative)

 ... occur after ... (non-associative)

 ... occur not after ... (non-associative)

 ... is in ... º … in … (non-associative)

 ... is not in ... º … not in … (non-associative)

 ... is present º ... is not null (non-associative)

 ... is not present º ... is null (non-associative)

 ... is Boolean (non-associative)

 ... is not Boolean (non-associative)

 ... is number (non-associative)

 ... is not number (non-associative)

 ... is time (non-associative)

 ... is not time (non-associative)

 ... is time of day (non-associative)

 ... is not time of day (non-associative)

 ... is duration (non-associative)

 ... is not duration (non-associative)

 ... is string (non-associative)

 ... is not string (non-associative)

 ... is list (non-associative)

 ... is not list (non-associative)

 ... is object (non-associative)

 ... is not object (non-associative)

 ... is fuzzy (non-associative)

 ... is not fuzzy (non-associative)

 ... is crisp (non-associative)

 ... is not crisp (non-associative)

 ... is <object-name> (non-associative)

Arden Syntax for Medical Logic Systems

Page 236 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

 ... is not <object-name> (non-associative)

 ... || ... (left-associative)

 ... formatted with ... (non-associative)

 uppercase … (right-associative)

 lowercase … (right-associative)

 trim … (right-associative)

 trim left … (right-associative)

 trim right … (right-associative)

 substring … characters from … (right-associative)

 substring … characters from … starting at … (right-associative)

 localized … by … (right-associative)

 localized … (non-associative)

 + ... (non-associative)

 - ... (non-associative)

 ... + ... (left-associative)

 ... - ... (left-associative)

 ... * ... (left-associative)

 ... / ... (left-associative)

 ... ** ... (non-associative)

 ... before ... (non-associative)

 ... after ... º … from … (non-associative)

 ... ago (non-associative)

 ... year º ... years (non-associative)

 ... month º ... months (non-associative)

 ... week º ... weeks (non-associative)

 ... day º ... days (non-associative)

 ... hour º ... hours (non-associative)

 ... minute º ... minutes (non-associative)

 ... second º ... seconds (non-associative)

 … matches pattern … (non-associative)

 find … [in] … (right-associative)

 find … [in] … starting at … (right-associative)

 count [of] ... (right-associative)

 exist [of] ... (right-associative)

 avg [of] ... º average [of] ... (right-associative)

 median [of] ... (right-associative)

 sum [of] ... (right-associative)

 stddev [of] ... (right-associative)

 variance [of] ... (right-associative)

 any [of] ... (right-associative)

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 237

Revision date: 4/25/2023 Print date: 10/4/2023

 all [of] ... (right-associative)

 no [of] ... (right-associative)

 slope [of] ... (right-associative)

 min ... from º minimum ... from ... (right-associative)

 min [of] ... º minimum [of] ... (right-associative)

 min ... from … using º minimum ... from ... using … (right-associative)

 min [of] ... using º minimum [of] ... using … (right-associative)

 max ... from ... º maximum ... from ... (right-associative)

 max [of] ... º maximum [of] ... (right-associative)

 max ... from ... using …º maximum ... from ... using … (right-associative)

 max [of] ... using … º maximum [of] ... using (right-associative)

 index min ... from º index minimum ... from ... (right-associative)

 index min [of] ... º index minimum [of] ... (right-associative)

 index max ... from ... º index maximum ... from ... (right-associative)

 index max [of] ... º index maximum [of] ... (right-associative)

 last ... from ... (right-associative)

 last [of] ... (right-associative)

 first ... from ... (right-associative)

 first [of] ... (right-associative)

 latest ... from ... (right-associative)

 latest ... from ... using (right-associative)

 sublist ... elements from ... (right-associative)

 sublist ... elements starting at … from ... (right-associative)

 latest [of] ... (right-associative)

 latest [of] ... using …(right-associative)

 earliest ... from ... (right-associative)

 earliest [of] ... (right-associative)

 earliest ... from ... using … (right-associative)

 earliest [of] ... using …(right-associative)

 nearest ... from ... (right-associative)

 index nearest ... from ... (right-associative)

 index of ... within ... (right-associative)

 at least ... from ... (right-associative)

 at most ... from ... (right-associative)

 increase [of] ... (right-associative)

 decrease [of] ... (right-associative)

 percent increase [of] ... º % increase [of] ... (right-associative)

 percent decrease [of] ... º % decrease [of] ... (right-associative)

 interval [of] ... (right-associative)

 time [of] ... (right-associative)

 applicability [of] ... (right-associative)

 defuzzified ... (right-associative)

 time of day [of] ... (right-associative)

 day of week [of] ... (right-associative)

 arccos [of] ... (right-associative)

 arcsin [of] ... (right-associative)

 arctan [of] ... (right-associative)

 cos [of] ... º cosine [of] ... (right-associative)

 sin [of] ... º sine [of] ... (right-associative)

 tan [of] ... º tangent [of] ... (right-associative)

 exp [of] ... (right-associative)

 floor [of] ... (right-associative)

 ceiling [of] ... (right-associative)

 truncate [of] ... (right-associative)

 round [of] ... (right-associative)

Arden Syntax for Medical Logic Systems

Page 238 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

 log [of] ... (right-associative)

 log10 [of] ... (right-associative)

 int [of] ... (right-associative)

 abs [of] ... (right-associative)

 sqrt [of] ... (right-associative)

 extract year [of] ... (right-associative)

 extract month [of] ... (right-associative)

 extract day [of] ... (right-associative)

 extract hour [of] ... (right-associative)

 extract minute [of] ... (right-associative)

 extract second [of] ... (right-associative)

 replace year [of] ... with … (right-associative)

 replace month [of] ... with … (right-associative)

 replace day [of] ... with … (right-associative)

 replace hour [of] ... with … (right-associative)

 replace minute [of] ... with … (right-associative)

 replace second [of] ... with …(right-associative)

 reverse [of] ... (right-associative)

 extract characters [of] ... (right-associative)

 string [of] ... (right-associative)

 length [of] … (right-associative)

 … . … (right-associative)

 attribute … from … (right-associative)

 extract attribute names … (right-associative)

 clone … (right-associative)

 … seqto … (non-associative)

 … as number (non-associative)

 … as time (non-associative)

 … as string (non-associative)

 … as truth value (non-associative)

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 239

Revision date: 4/25/2023 Print date: 10/4/2023

A5 FORMAT SPECIFICATION (SEE 9.8.2)

A5.1 The following is a complete description of supported types within the format specification:

type Required character that determines whether the associated argument is interpreted as a

character, a string, or a number.

Table A5-1

Character Type Output Format

c number The number is assumed to represent a character code to be output as a character.

C number The number is assumed to represent a character code to be output as a character.

D number Signed decimal integer.

I number Signed decimal integer.

O number Unsigned octal integer.

U number Unsigned decimal integer.

x number Unsigned hexadecimal integer, using "abcdef."

X number Unsigned hexadecimal integer, using "ABCDEF."

e number Signed value having the form [–]d.dddd e [sign]ddd where d is a single decimal digit,

dddd is one or more decimal digits, ddd is exactly three decimal digits, and sign is + or –.

E number Identical to the e format, except that E, rather than e, introduces the exponent.

F double Signed value having the form [–]dddd.dddd, where dddd is one or more decimal digits.

The number of digits before the decimal point depends on the magnitude of the number,

and the number of digits after the decimal point depends on the requested precision.

g double Signed value printed in f or e format, whichever is more compact for the given value and

precision. The e format is used only when the exponent of the value is less than –4 or

greater than or equal to the precision argument. Trailing zeros are truncated, and the

decimal point appears only if one or more digits follow it.

G double Identical to the g format, except that E, rather than e, introduces the exponent (where

appropriate).

N Not supported. Not supported.

P Not supported. Not supported.

S string Specifies a character. Characters are printed until the precision value is reached.

T time A time is printed based on the user’s environment settings and the precision value.

A5.2 The optional fields, which appear before the type character, control other aspects of the formatting, as

follows:

flags Optional character or characters that control justification of output and printing of signs,

blanks, decimal points, and octal and hexadecimal prefixes. More than one flag can appear in

a format specification.

Arden Syntax for Medical Logic Systems

Page 240 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

Table A5-2

Flag Meaning Default

– Left align the result within the given field width. Right align.

+ Prefix the output value with a sign (+ or –) if the output value is of

a signed type.

Sign appears only for

negative signed values (–).

0 If width is prefixed with 0, zeros are added until the minimum

width is reached. If 0 and – appear, the 0 is ignored. If 0 is specified

with an integer format (I, u, x, X, o, d) the 0 is ignored.

No padding.

Space Prefix the output value with a space if the output value is signed

and positive; the space is ignored if both the space and + flags

appear.

No space appears.

When used with the o, x, or X format, the # flag prefixes any

nonzero output value with 0, 0x, or 0X, respectively.

No blank appears.

When used with the e, E, or f format, the # flag forces the output

value to contain a decimal point in all cases.

Decimal point appears only

if digits follow it.

 When used with the g or G format, the # flag forces the output

value to contain a decimal point in all cases and prevents the

truncation of trailing zeros.

Decimal point appears only

if digits follow it. Trailing

zeros are truncated.

Ignored when used with c, d, i, u, or s.

The second optional field of the format specification is the width specification. The width argument is a

nonnegative decimal integer controlling the minimum number of characters printed. If the number of

characters in the output value is less than the specified width, blanks are added to the left or the right of the

values – depending on whether the – flag (for left alignment) is specified – until the minimum width is

reached. If width is prefixed with 0, zeros are added until the minimum width is reached (not useful for left-

aligned numbers).

The width specification never causes a value to be truncated. If the number of characters in the output value

is greater than the specified width, or if width is not given, all characters of the value are printed (subject to

the precision specification).

If the width specification is an asterisk (*), an integer argument from the argument list supplies the value.

The width argument must precede the value being formatted in the argument list. A nonexistent or small

field width does not cause the truncation of a field; if the result of a conversion is wider than the field

width, the field expands to contain the conversion result.

Width Optional number that specifies the minimum number of characters output.

Precision Optional number that specifies the maximum number of characters printed for all or part of

the output field, or the minimum number of digits printed for integer values.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 241

Revision date: 4/25/2023 Print date: 10/4/2023

Table A5-3

Type Meaning Default

c, C The precision has no effect. Character is printed.

D, i, u,

o, x, X

The precision specifies the minimum number of digits

to be printed. If the number of digits in the argument is

less than precision, the output value is padded on the

left with zeros. The value is not truncated when the

number of digits exceeds precision.

Default precision is 1.

E, E The precision specifies the number of digits to be

printed after the decimal point. The last printed digit is

rounded.

Default precision is 6; if precision is 0,

or the period (.) appears without a

number following it, no decimal point

is printed.

F The precision value specifies the number of digits after

the decimal point. If a decimal point appears, at least

one digit appears before it. The value is rounded to the

appropriate number of digits.

Default precision is 6; if precision is 0,

or if the period (.) appears without a

number following it, no decimal point

is printed.

G, G The precision specifies the maximum number of

significant digits printed. The last printed digit is

rounded.

Six significant digits are printed, with

any trailing zeros truncated.

S The precision specifies the maximum number of

characters to be printed. Characters in excess of

precision are not printed.

Characters are printed until a null

character is encountered.

T The precision specifies how many of the date and time

fields are printed. The order and format of the fields are

implementation specific. Non-printed fields are

truncated (rounded down).

0: Year only

1: Year, Month

2: Date (Year, Month, Day)

3: Date, hour

4: Date, hour, minute

5: Date, hour, minute, second

All fields are printed.

Arden Syntax for Medical Logic Systems

Page 242 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

A6 OBJECTS IN ARDEN SYNTAX

A6.1 Rationale

Objects were introduced in Arden 2.5. These have been added as an enhancement to the Arden Syntax to

address user and vendor concerns about Arden limitations, and to dramatically increase the capabilities of

the syntax. This is an evolutionary step toward full support for receiving data in HL7 V3 messages.

Arden Syntax was originally designed to be very simple, and was limited to a single method of combining

data: the ordered list. To simplify list handling, and avoid complexities of things like lists containing lists,

the syntax specifies that lists contain only individual items. This has some significant limitations.

Repository data, which typically is represented logically as tables, is returned by the READ statement as a

set of columnar lists which are then assigned to separately named variables. After a READ, it can be

difficult to maintain the links between values which are naturally associated with each other. For example,

the last item of firstnames and the last item of lastnames may correspond, but what happens if a new item

is added to one of the lists, or one of the lists is reordered? The correspondence is lost.

As MLMs evolve, they typically gain features, size and complexity via successive refinement. Declaring

new variables for every temporary computation in an MLM clutters the MLM name space with names

which often have little meaning. MLM authors tend to start using lists as ad-hoc data structures, where the

first, second etc. items, rather than representing multiple instances of a piece of data, instead represent

several different types of data which are united by a common relationship. In most computer languages

these would be stored in a specialized data structure, with a declared name for each item. Items in a list can

only be referred to via their index (a number) which is not easy to read or understand.

Structured data is actually a simplifying concept. Introducing structured data types, while allowing complex

structures, tends to make any given usage simpler because of the ability to declare names and relationships.

The addition of Objects to the 2.5 standard acknowledges this, and this enhances the Arden Syntax in a

number of ways:

• Database queries can be returned as a list of rows, each of which contains named attributes and values.

• Object domain models, such as the HL7 models, may be adapted to Arden and referenced in a natural

way as objects by MLMs.

• Complex data structures, as needed, may be created and manipulated easily. Object attributes can

contain lists or other object instances, allowing arbitrary depth.

A design goal, in incorporating objects into Arden, was full backward compatibility, and to introduce as few

reserved words and as little new syntax as possible. New reserved words cause a compatibility problem

because existing MLMs may use those reserved words as variable names. We have only added two more

reserved words. Syntax changes are summarized:

• New reserved words: new, object

• New syntax (special characters): dot (.) for object reference, square braces ([]) to denote attributes in

an object declaration statement.

• New operators: dot (.) operator, is object, is not object, read as

A6.2 Object Details

The term object is used in the domain model sense, rather than as a programming language artifact. In

Arden an object is a structured data type, which has a name, and an ordered collection of attributes. Each of

these attributes may refer to any valid Arden data item, or be null. Each of these data items may have a

primary time associated with it, but the object itself does not have a primary time independent of its

attributes. For convenience, if all attributes of an object share a common primary time, the time of operator

will return that time when applied to the object.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 243

Revision date: 4/25/2023 Print date: 10/4/2023

A6.3 Object Identity

Objects in Arden have an identity, which is preserved when assigned or used as an argument to an operator,

added to lists or extracted from lists. Objects only are created when the new statement is called (from either

the data slot or logic slot) or via the read as statement in the data slot. An MLM may also reference objects

which are passed as arguments or returned from calls to other MLMs. Object identity is not maintained

when passed as an argument to an MLM call or a foreign interface, or returned from MLMs. That is, an

object is always copied when passed to or returned from an MLM (objects are passed by value to other

MLMs, not by reference).

Objects allow an MLM to create structured data, store it in a list, modify it while it still exists in the list,

and later reference it as part of the list. While this may sound complicated, it is an important feature. It

allows Arden syntax to remain fairly simple while still allowing the easy reference and manipulation of

query results.

// Assume a list of order objects, with attributes including status and

// message.

// This MLM wants to set the message based on the status.

For order_obj in order_obj_list do

if order_obj.status = "Cancel" then

 order_obj.msg := "This order has been cancelled.";

elseif order_obj.status = "Modify" then

 order_obj.msg := "This order has been modified.";

elseif order_obj.status = "Suspend" then

 order_obj.msg := "This order has been suspended.";

endif;

enddo;

This code only works correctly because of object identity. The order_obj in the loop corresponds to the

order referenced in the list of order objects. Without object identity it would not be possible to do this type

of manipulation on lists of items.

At this time it is not possible to determine in Arden if two variables refer to the same object. That is, the

equality operator is not defined for objects, and there is no substitute method defined. This may be a

something to add in a future version.

A6.4 Objects In Expressions

If an object is passed to a standard Arden operator (equality operator, addition, etc) which does not

explicitly define behavior with objects, the result of the operation will be null. To effectively use an object

as an argument to these standard operators, you must reference a particular field within the object (using the

dot operator) so that the resulting type is not an object.

A6.5 Creating Objects

The new statement can be used to create object instances, with all attributes initialized to null. Using

attribute assignment statements (Section 10.2.1.1) it is possible to set these fields explicitly after creating

the object. Sometimes however it is preferable to create an MLM which acts as a constructor, to create an

object and initialize attributes to the desired default values. Any time one of these objects needs to be

created, that MLM can be called. Here is an example of using an MLM as a constructor:

Create_field_mlm := MLM 'create_form_field';

Form_field := Call Create_field_mlm with name, value, status;

/* MLM ‘create_form_field’ segment */

Data:

 form_field_type :=

 Object [name, value, status];

 field := new form_field_type;

 field.name := argument1;

 field.value := argument2;

 field.status := argument3;;

Arden Syntax for Medical Logic Systems

Page 244 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

Evoke: /* called directly */ ;;

Logic: conclude true;;

Action: return field;;

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 245

Revision date: 4/25/2023 Print date: 10/4/2023

Appendices

 (Nonmandatory Information)

X1 LANGUAGE AND COUNTRY CODES FOR HL7 INTERNATIONAL

AFFILIATE COUNTRIES

X1.1 Introduction

This appendix lists language and country codes as defined by ISO 639.1 and ISO 3166 for countries with

HL7 Affiliates. Languages and country codes are arranged in alphabetic order by their English-language

name. For additional language and country codes consult the appropriate ISO language / country registrars

via ISO (www.iso.ch).

X1.2 Language Codes

Language Code Language Code
Assamese as
Basque eu
Bengali bn
Catalan; Valencian ca
Chinese zh
Croatian hr
Czech cs
Danish da
Dutch; Flemish nl
English en

Faroese fo
Finnish fi
French fr
Gaelic; Scottish Gaelic gd
Galician gl
German de
Greek, Modern (1453-) el
Greenlandic; Kalaallisut kl
Gujarati gu
Hindi hi
Irish ga
Italian it
Japanese ja

Kannada kn
Kashmiri ks
Korean ko
Kurdish ku
Malayalam ml
Maori mi
Marathi mr
Oriya or
Portuguese pt
Punjabi; Panjabi pa
Russian ru
Sanskrit sa
Sindhi sd
Slovak sk
Slovenian sl
Spanish; Castilian es
Swedish sv
Tamil ta
Telugu te
Turkish tr
Urdu ur
Welsh cy

X1.3 Country Codes

Country Code Country Code
Argentina Ar

Australia Au

Brazil Br

China Cn

Croatia (Local Name: Hrvatska) Hr

Czech Republic Cz

Denmark Dk

Finland Fi

France Fr

Germany De

Greece Gr

Italy It

Korea, Republic Of Kr

Mexico Mx

Netherlands Nl

New Zealand Nz

Spain Es

Sweden Se

Switzerland Ch

Taiwan Tw

Turkey Tr

United Kingdom Gb

Arden Syntax for Medical Logic Systems

Page 246 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

India In

Ireland Ie

United States Us

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 247

Revision date: 4/25/2023 Print date: 10/4/2023

X2 SAMPLE MLMS

The following are sample MLMs to be used only to demonstrate the syntax. They have not been tested, and they

have not been used in clinical care.

X2.1 Data Interpretation MLM

maintenance:

 title: Fractional excretion of sodium;;

 mlmname: fractional_na;;

 arden: Version 2;;

 version: 1.00;;

 institution: Columbia-Presbyterian Medical Center;;

 author: George Hripcsak, M.D.

 (hripcsak@cucis.cis.columbia.edu);;

 specialist: ;;

 date: 1991-03-13;;

 validation: testing;;

library:

 purpose:
 Calculate the fractional excretion of sodium whenever urine
 electrolytes are stored. (This MLM demonstrates data
 interpretation across independent laboratory results.);;

 explanation:
 The fractional excretion of sodium is calculated from the urine
 sodium and creatinine and the most recent serum sodium and
 creatinine (where they occurred within the past 24 hours). A
 value less than 1.0 % is considered low.;;

 keywords: fractional excretion; serum sodium; azotemia;;

 citations:
 1. Steiner RW. Interpreting the fractional excretion of sodium.
 Am J Med 1984;77:699-702.;;

knowledge:

 type: data-driven;;

 data:
 let (urine_na, urine_creat) be read last
 ({urine electrolytes where evoking}
 where they occurred within the past 24 hours);
 let (serum_na, serum_creat) be read last
 ({serum electrolytes where they are not null}
 where they occurred within the past 24 hours);
 let urine_electrolyte_storage be event
 {storage of urine electrolytes};
 ;;

 evoke:
 urine_electrolyte_storage;;

 logic:
 /* calculate fractional excretion of sodium */
 let fractional_na be 100 * (urine_na / urine_creat) /
 (serum_na / serum_creat);
 /* if the frational Na is invalid (e.g., if the */
 /* urine or serum sample is QNS) then stop here */
 if fractional_na is null then
 conclude false;
 endif;
 /* check whether the fractional Na is low */
 let low_fractional_na be fractional_na < 1.0;
 /* send the message */
 conclude true;
 ;;

Arden Syntax for Medical Logic Systems

Page 248 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

 action:
 if low_fractional_na then
 write "The calculated fractional excretion of sodium is low ("
 || fractional_na || "). If the patient is azotemic, " ||
 "this number may indicate: volume depletion, " ||
 "hepatic failure, congestive heart failure, acute " ||
 "glomerulonephritis, oliguric myoglobinuric or " ||
 "hemoglobinuric renal failure, oliguric contrast " ||
 "nephrotoxicity, polyuric renal failure with severe " ||
 "burns, renal transplant rejection, 10 % of cases " ||
 "with non-oliguric acute tubular necrosis, and " ||
 "several other forms of renal injury.";
 else
 write "The calculated fractional excretion of sodium is " ||
 "not low (" || fractional_na || "). If the patient " ||
 "is azotemic, this may indicate: acute renal " ||
 "parenchymal injury, volume depletion coexisting " ||
 "with diurectic use or pre-existing chronic renal " ||
 "disease, and up to 10 % of cases of uncomplicated " ||
 "volume depletion.";
 endif;
 ;;

end:

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 249

Revision date: 4/25/2023 Print date: 10/4/2023

X2.2 Research Study Screening MLM

maintenance:

 title: Screen for hypercalcemia for Dr. B.'s study;;

 mlmname: hypercalcemia_for_b;;

 arden: Version 2;;

 version: 2.02;;

 institution: Columbia-Presbyterian Medical Center;;

 author: George Hripcsak, M.D.;;

 specialist: ;;

 date: 1990-12-04;;

 validation: research;;

library:

 purpose:
 Screen for hypercalcemia for Dr. B.'s study. (This MLM demonstrates

 screening patients for clinical trials.);;

 explanation:
 The storage of a serum calcium value evokes this MLM. If a serum
 albumin is available from the same blood sample as the calcium,
 then the corrected calcium is calculated, and patients with actual
 or corrected calcium greater than or equal 11.5 are accepted; if
 such a serum albumin is not available, then patients with actual
 calcium greater than or equal 11.0 are accepted. Patients with
 serum creatinine greater than 6.0 are excluded from the study.;;

 keywords: hypercalcemia;;

 citations: ;;

knowledge:

 type: data-driven;;

 data:
 /* the storage of a calcium value evokes this MLM */
 storage_of_calcium := event {‘06210519’,’06210669’};
 /* total calcium in mg/dL */
 calcium := read last {‘06210519’,’06210669’;’CALCIUM’};
 /* albumin in g/dL */

 evoking_albumin := read last {‘06210669’;’ALBUMIN’ where evoking};
 /* albumin in g/dL; not necessarily from same test as Ca */
 last_albumin := read last ({‘06210669’;’ALBUMIN’}
 where it occurred within the past 2 weeks);
 /* creatinine in mg/dL; not necessarily from same test as Ca */
 creatinine := read last ({‘06210669’,’06210545’,’06000545’;’CREAT’}
 where it occurred within the past 2 weeks);
 ;;

 evoke:
 storage_of_calcium;;

Arden Syntax for Medical Logic Systems

Page 250 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

 logic:
 /* make sure the Ca is present (vs. hemolyzed, ...) */
 IF calcium is not present THEN
 conclude false;
 ENDIF;
 /* if creatinine is present and greater than 6, then stop now */
 IF creatinine is present THEN
 IF creatinine is greater than 6.0 THEN
 conclude false;
 ENDIF;
 ENDIF;
 /* is an albumin present for the same sample as the calcium */
 IF evoking_albumin is present THEN
 /* calculate the corrected calcium */
 IF evoking_albumin is less than 4.0 THEN
 corrected_calcium := calcium + (4.0 - evoking_albumin) * 0.8;
 ELSE
 /* corrected is never less than actual */
 corrected_calcium := calcium;
 ENDIF;
 /* test for total or corrected calcium >= 11.5 */
 IF calcium >= 11.5 OR corrected_calcium >= 11.5 THEN
 msg := "calcium = " || calcium ||
 " on " || time of calcium ||
 " (corrected calcium = " ||
 corrected_calcium || ")";
 msg := msg||"; albumin = "||evoking_albumin;
 IF creatinine is present THEN
 msg := msg ||
 "; last creatinine = "||creatinine;
 msg := msg ||
 "; (total or corrected calcium " ||
 "was at least 11.5)";
 conclude true;
 ELSE
 conclude false;
 ENDIF;
 ENDIF;
 /* no evoking albumin was present */
 ELSE
 /* check for true calcium >= 11.0 */
 IF calcium >= 11.0 THEN
 msg := "calcium = " || calcium || " on " || time of calcium;
 IF last_albumin is present THEN
 msg := msg || "; last albumin " ||
 "(not from same blood sample as calcium) = " ||
 last_albumin;
 IF creatinine is present THEN
 msg := msg || "; last creatinine = "
 || creatinine;
 msg := msg ||
 "; (total calcium was at least 11.0; " ||
 "corrected calcium was not calculated)";
 conclude true;
 ELSE
 conclude false;
 ENDIF;
 ENDIF;
 ENDIF;
 ENDIF;
 ;;

 action: write "hypercalcemia study: " || msg;;

 urgency: 50;;

end:

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 251

Revision date: 4/25/2023 Print date: 10/4/2023

X2.3 Contraindication Alert MLM

maintenance:

 title: Check for penicillin allergy;;

 mlmname: pen_allergy;;

 arden: ASTM-E1460-1995;;

 version: 1.00;;

 institution: Columbia-Presbyterian Medical Center;;

 author: George Hripcsak, M.D.;;

 specialist: ;;

 date: 1991-03-18;;

 validation: testing;;

library:

 purpose:
 When a penicillin is prescribed, check for an allergy. (This MLM

 demonstrates checking for contraindications.);;

 explanation:
 This MLM is evoked when a penicillin medication is ordered. An
 alert is generated because the patient has an allergy to penicillin
 recorded.;;

 keywords: penicillin; allergy;;

 citations: ;;

knowledge:

 type: data-driven;;

 data:
 /* an order for a penicillin evokes this MLM */
 penicillin_order := event {medication_order where
 class = penicillin};
 /* find allergies */
 penicillin_allergy := read last {allergy where
 agent_class = penicillin};
 ;;

 evoke:

 penicillin_order;;

 logic:
 if exist(penicillin_allergy)then
 conclude true;
 endif;
 ;;

 action:
 write "Caution, the patient has the following allergy to penicillin
 documented:"
 || penicillin_allergy;;

 urgency: 50;;

end:

Arden Syntax for Medical Logic Systems

Page 252 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

X2.4 Management Suggestion MLM

maintenance:

 title: Dosing for gentamicin in renal failure;;

 mlmname: gentamicin_dosing;;

 arden: Version 2.1;;

 version: 1.00;;

 institution: Columbia-Presbyterian Medical Center;;

 author: George Hripcsak, M.D.;;

 specialist: ;;

 date: 1991-03-18;;

 validation: testing;;

library:

 purpose:
 Suggest an appropriate gentamicin dose in the setting of renal

 insufficiency. (This MLM demonstrates a management suggestion.);;

 explanation:
 Patients with renal insufficiency require the same loading dose of
 gentamicin as those with normal renal function, but they require a
 reduced daily dose. The creatinine clearance is calculated by serum
 creatinine, age, and weight. If it is less than 30 ml/min, then an
 appropriate dose is calculated based on the clearance. If the
 ordered dose differs from the calculated dose by more than 20 %,
 then an alert is generated.;;

 keywords: gentamicin; dosing;;

 citations: ;;

knowledge:

 type: data-driven;;

 data:
 /* an order for gentamicin evokes this MLM */
 gentamicin_order := event {medication_order where
 class = gentamicin};
 /* gentamicin doses */
 (loading_dose, periodic_dose, periodic_interval) :=

 read last {medication_order initial dose,
 periodic dose, interval};
 /* serum creatinine mg/dl */
 serum_creatinine := read last ({serum_creatinine}
 where it occurred within the past 1 week);
 /* birthdate */
 birthdate := read last {birthdate};
 /* weight kg */
 weight := read last ({weight}
 where it occurred within the past 3 months);
 ;;

evoke:
 gentamicin_order;;

logic:
 age := (now - birthdate) / 1 year;
 creatinine_clearance := (140 - age) * (weight) /
 (72 * serum_creatinine);
 /* the algorithm can be adjusted to handle higher clearances */
 if creatinine_clearance < 30 then
 calc_loading_dose := 1.7 * weight;

 calc_daily_dose := 3 * (0.05 + creatinine_clearance / 100);
 ordered_daily_dose := periodic_dose *
 periodic_interval /(1 day);
 /* check whether order is appropriate */
 if (abs(loading_dose - calc_loading_dose) /
 calc_loading_dose > 0.2)
 or
 (abs(ordered_daily_dose - calc_daily_dose) /
 calc_daily_dose > 0.2) then
 conclude true;
 endif;
 endif;
 ;;

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 253

Revision date: 4/25/2023 Print date: 10/4/2023

 action:
 write "Due to renal insufficiency, the dose of gentamicin " ||
 "should be adjusted. The patient's calculated " ||
 "creatinine clearance is " || creatinine_clearance ||
 " ml/min. A single loading dose of " ||
 calc_loading_dose || " mg should be given, followed by " ||
 calc_daily_dose || " mg daily. Note that dialysis may " ||
 "necessitate additional loading doses.";
 ;;

 urgency: 50;;

end:

Arden Syntax for Medical Logic Systems

Page 254 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

X2.5 Monitoring MLM

maintenance:

 title: Monitor renal function while taking gentamicin;;

 mlmname: gentamicin_monitoring;;

 arden: Version 2;;

 version: 1.00;;

 institution: Columbia-Presbyterian Medical Center;;

 author: George Hripcsak, M.D.;;

 specialist: ;;

 date: 1991-03-19;;

 validation: testing;;

library:

 purpose:
 Monitor the patient's renal function when the patient is taking

 gentamicin. (This MLM demonstrates periodic monitoring.);;

 explanation:
 This MLM runs every five days after the patient is placed on
 gentamicin until the medication is stopped. If the serum creatinine
 has not been checked recently, then an alert is generated
 requesting follow-up. If the serum creatinine has been checked, is
 greater than 2.0, and has risen by more than 20 %, then an alert is
 generated warning that the patient may be developing renal
 insufficiency due to gentamicin.;;

 keywords: gentamicin; renal function;;

 citations: ;;

knowledge:

 type: data-driven;;

 data:
 /* an order for gentamicin evokes this MLM */
 gentamicin_order := event {medication_order where
 class = gentamicin};
 /* check whether gentamicin has been discontinued */
 gentamicin_discontinued :=

 read exist({medication_cancellation where class = gentamicin}
 where it occurs after eventtime);
 /* baseline serum creatinine mg/dl */
 baseline_creatinine := read last ({serum_creatinine}
 where it occurred before eventtime);
 /* followup serum creatinine mg/dl */
 recent_creatinine := read last ({serum_creatinine}
 where it occurred within the past 3 days);
 ;;

 evoke:
 every 5 days for 10 years starting 5 days after time of
 gentamicin_order until gentamicin_discontinued;;

 logic:
 if recent_creatinine is not present then
 no_recent_creatinine := true;
 conclude true;
 else
 no_recent_creatinine := false;
 if % increase of (serum_creatinine,
 recent_creatinine) > 20 /* % */

 and recent_creatinine > 2.0 then
 conclude true;
 endif;
 endif;
 ;;

 action:
 if no_recent_creatinine then
 write "Suggest obtaining a serum creatinine to follow up " ||
 "on renal function in the setting of gentamicin.";
 else
 write "Recent serum creatinine (" || recent_creatinine ||
 " mg/dl) has increased, possibly due to renal " ||
 "insufficiency related to gentamicin use.";
 endif;
 ;;

 urgency: 50;;

end:

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 255

Revision date: 4/25/2023 Print date: 10/4/2023

X2.6 Management Suggestion MLM

maintenance:

 title: Granulocytopenia and Trimethoprim/Sulfamethoxazole;;

 mlmname: anctms;;

 arden: Version 2;;

 version: 2.00;;

 institution: Columbia-Presbyterian Medical Center;;

 author: George Hripcsak, M.D.;;

 specialist: ;;

 date: 1991-05-28;;

 validation: testing;;

library:

 purpose:
 Detect granulocytopenia possibly due to

 trimethoprim/sulfamethoxazole;;

 explanation:
 This MLM detects patients that are currently taking
 trimethoprim/sulfamethoxazole whose absolute neutrophile count is
 less than 1000 and falling.;;

 keywords:
 granulocytopenia; agranulocytosis; trimethoprim; sulfamethoxazole;;

 citations:
 1. Anti-infective drug use in relation to the risk of
 agranulocytosis and aplastic anemia. A report from the
 International Agranulocytosis and Aplastic Anemia Study.
 Archives of Internal Medicine, May 1989, 149(5):1036-40.;;

 links:
 "CTIM .34.56.78";
 "MeSH agranulocytosis/ci and sulfamethoxazole/ae";;

knowledge:

 type: data-driven;;

 data:

 /* capitalized text within curly brackets would be replaced with */
 /* an institution's own query */
 let anc_storage be event {STORAGE OF ABSOLUTE_NEUTROPHILE_COUNT};
 let anc be read last 2 from ({ABSOLUTE_NEUTROPHILE_COUNT}
 where they occurred within the past 1 week);
 let pt_is_taking_tms be read exist
 {TRIMETHOPRIM_SULFAMETHOXAZOLE_ORDER};
 ;;

 evoke: anc_storage;;

 logic:
 if pt_is_taking_tms
 and the last anc is less than 1000
 and the last anc is less than the first anc
 /* is anc falling? */
 then
 conclude true;
 else
 conclude false;
 endif;
 ;;

 action:
 write "Caution: patient's relative granulocytopenia may be " ||
 "exacerbated by trimethoprim/sulfamethoxazole.";
 ;;

end:

Arden Syntax for Medical Logic Systems

Page 256 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

X2.7 MLM Translated from CARE

maintenance:

 title: Cardiology MLM from CARE, p. 85;;

 mlmname: care_cardiology_mlm;;

 arden: Version 2;;

 version: 1.00;;

 institution: Regenstrief Institute;;

 author: Clement J. McDonald, M.D.; George Hripcsak, M.D.;;

 specialist: ;;

 date: 1991-05-28;;

 validation: testing;;

library:

 purpose:
 Recommend higher beta-blocker dosage if it is currently low and the

 patient is having excessive angina or premature ventricular
 beats.;;

 explanation:
 If the patient is not bradycardic and is taking less than 360 mg of
 propanolol or less than 200 mg of metoprolol, then if the patient
 is having more than 4 episodes of angina per month or more than 5
 premature ventricular beats per minute, recommend a higher dose.;;

 keywords:
 beta-blocker, angina; premature ventricular beats; bradycardia;;

 citations:
 1. McDonald CJ. Action-oriented decisions in ambulatory medicine.
 Chicago: Year Book Medical Publishers, 1981, p. 85.
 2. Prichard NC, Gillam PM. Assessment of propranolol in angina
 pectoris: clinical dose response curve and effect on
 electrocardiogram at rest and on exercise. Br Heart J,
 33:473-480 (1971).
 3. Jackson G, Atkinson L, Oram S. Reassessment of failed beta-
 blocker treatment in angina pectoris by peak exercise heart rate
 measurements. Br Med J, 3:616-619 (1975).
 ;;

knowledge:

 type: data-driven;;

 data:
 let last_clinic_visit be read last {CLINIC_VISIT};
 let (beta_meds, beta_doses, beta_statuses) be read
 {MEDICATION, DOSE, STATUS
 where the beta_statuses are ‘current’
 and beta_meds are a kind of ‘beta_blocker’};
 let low_dose_beta_use be false;
 /* if patient is on one beta blocker, check if it is low dose */
 if the count ofbeta_meds = 1 then
 if (last beta_meds = "propanolol"
 and
 last beta_doses < 360)
 or (the last beta_meds = "metoprolol"
 and
 the last beta_doses <= 200) then
 let low_dose_beta_use be true;
 endif;
 endif;

 let cutoff_time be the maximum of
 ((1 month ago),(time of last_clinic_visit),
 (time of last beta_meds));
 /* a system-specific query to angina frequency, PVC frequency, */
 /* and pulse rate would replace capitalized terms */
 let angina_frequency be read last ({ANGINA_FREQUENCY}
 where it occurred after cutoff_time);
 let premature_beat_frequency be read last
 ({PREMATURE_BEAT_FREQUENCY}
 where it occurred after cutoff_time);
 let last_pulse_rate be read last {PULSE_RATE};
 ;;

evoke: /* this MLM is called directly */;;

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 257

Revision date: 4/25/2023 Print date: 10/4/2023

logic:
 if last_pulse_rate is greater than 60 and
 low_dose_beta_use then
 if angina_frequency is greater than 4 then
 let msg be
 "Increased dose of beta blockers may be " ||
 "needed to control angina.";
 conclude true;
 else
 if premature_beat_frequency is greater than 5 then
 let msg be
 "Increased dose of beta blockers may " ||
 "be needed to control PVC's.";
 conclude true;
 endif;
 endif;
 endif;
 conclude false;
 ;;

action:
 write msg;;

end:

Arden Syntax for Medical Logic Systems

Page 258 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

X2.8 MLM Using While Loop

maintenance:

 title: Allergy_test_with_while_loop;;

 filename: test_for_allergies_while_loop;;

 version: 0.00;;

 institution: ;;

 author: ;;

 specialist: ;;

 date: 1997-11-06;;

 validation: testing;;

library:

 purpose:
 Illustrates the use of a WHILE-LOOP that processes an entire list
 ;;

 explanation:
 ;;

 keywords:
 ;;

knowledge:

 type: data-driven;;

 data:
 /* Receives four arguments from the calling MLM: */
 (med_orders,
 med_allergens,
 patient_allergies,
 patient_reactions) := ARGUMENT;
 ;;

 evoke:
 ;;

 logic:
 /* Initializes variables */
 a_list:= ();
 m_list:= ();

 r_list:= ();
 num:= 1;
 /* Checks each allergen in the medications to determine */
 /* if the patient is allergic to it */
 while num <= (count med_allergen) do
 allergen:= last(first num from med_allergens);
 allergy_found:= (patient_allergies = allergen);
 reaction:= patient_reactions where allergy_found;
 medication:= med_orders where (med_allergens = allergen);

 /* Adds the allergen, medication, and reaction to */
 /* variables that will be returned to the calling MLM */
 If any allergy_found then
 a_list:= a_list, allergen;
 m_list:= m_list, medication;
 r_list:= r_list, reaction;
 endif;
 /* Increments the counter that is used to stop the while-loop */
 num:= num + 1;
 enddo;
 /* Concludes true if the patient is allergic to one of */

 /* the medications */
 If exist m_list then
 conclude true;
 endif;
 ;;

 action:
 /* Returns three lists to the calling MLM */
 return m_list, a_list, r_list;
 ;;

end:

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 259

Revision date: 4/25/2023 Print date: 10/4/2023

X2.9 MLM Fever Calculation – Crisp

maintenance:

 title: Increased body temperature - crisp;;

 mlmname: increased_body_temperature_crisp;;

 arden: version 2.7;;

 version: ;;

 institution: ;;

 author: ;;

 specialist: ;;

 date: 2011-07-06;;

 validation: testing;;

library:

 purpose: detects an increased body temperatur over a day - absolute criterion;;

 explanation: Check if maximum of body temperature is increased with

 crisp logic.

 reads parameter: "TempMax" (in degree Celsius).

 ;;

 keywords: body temperature, temperature, data to symbol conversion;;

 citations: ;;

knowledge:

 type: data_driven;;

 data: ///

 readParam := interface {read param}; // read single parameter

 ;;

 evoke: ;;

 logic: ///////////////////////////////////////

 // read precondition from host

 paramTempMax := call readParam with "TempMax";

 // calculation of result

 if paramTempMax is present then

 if paramTempMax >= 38 then

 tempratureIncreased := 1;

 time tempratureIncreased := time paramTempMax;

 else

 tempratureIncreased := 0;

 time tempratureIncreased := time paramTempMax;

 endif;

 endif;

 conclude true;

 ;;

 action: ///////////////////////////////////////

 write tempratureIncreased;

 ;;

end:

Arden Syntax for Medical Logic Systems

Page 260 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

X2.10 MLM Fever Calculation – Fuzzy Simulation

maintenance:

 title: Increased body temperature - fuzzy simulation;;

 mlmname: increased_body_temperature_fuzzy_simulation;;

 arden: version 2.9;;

 version: ;;

 institution: ;;

 author: ;;

 specialist: ;;

 date: 2011-07-06;;

 validation: testing;;

library:

 purpose: detects an increased body temperatur over a day - absolute criterion;;

 explanation: Check if maximum of body temperature is increased with

 explicit coded fuzzy logic.

 reads parameter: "TempMax" (in degree Celsius).

 ;;

 keywords: body temperature, temperature, data to symbol conversion;;

 citations: ;;

knowledge:

 type: data_driven;;

 data: ///

 // interface

 readParam := interface {read param}; // read single parameter

 ;;

 evoke: ;;

 logic: ///////////////////////////////////////

 // read precondition from host

 paramTempMax := call readParam with "TempMax";

 // calculation of result

 if paramTempMax is present then

 if paramTempMax >= 38 then

 tempratureIncreased := 1;

 time tempratureIncreased := time paramTempMax;

 elseif paramTempMax > 37.5 then

 tempratureIncreased := (paramTempMax - 37.5) / 0.5;

 time tempratureIncreased := time paramTempMax;

 else

 tempratureIncreased := 0;

 time tempratureIncreased := time paramTempMax;

 endif;

 endif;

 conclude true;

 ;;

 action: ///////////////////////////////////////

 write tempratureIncreased;

 ;;

 resources:

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 261

Revision date: 4/25/2023 Print date: 10/4/2023

 default: en;;

 language: en;;

 ;;

end:

Arden Syntax for Medical Logic Systems

Page 262 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

X2.11 MLM Fever Calculation – Fuzzy Logic

maintenance:

 title: Increased body temperature - fuzzy;;

 mlmname: increased_body_temperature_fuzzy;;

 arden: version 2.9;;

 version: ;;

 institution: ;;

 author: ;;

 specialist: ;;

 date: 2011-07-06;;

 validation: testing;;

library:

 purpose: detects an increased body temperatur over a day - absolute criterion;;

 explanation: Check if maximum of body temperature is increased with

 fuzzy logic.

 reads parameter: "TempMax" (in degree Celsius).

 ;;

 keywords: body temperature, temperature, data to symbol conversion;;

 citations: ;;

knowledge:

 type: data_driven;;

 data: ///

 // interface

 readParam := interface {read param}; // read single parameter

 ;;

 evoke: ;;

 logic: ///////////////////////////////////////

 // read precondition from host

 paramTempMax := call readParam with "TempMax";

 // calculation of result

 if paramTempMax is present then

// <= 37.5 °C: 0; >= 38 °C: 1; inbetween: linear

 tempErh := fuzzy set (37.5, truth value 0), (38, truth value 1);

 tempratureIncreased := paramTempMax is in tempErh;

 time tempratureIncreased := time paramTempMax;

 endif;

 conclude true;

 ;;

 action: ///////////////////////////////////////

 write tempratureIncreased;

 ;;

 resources:

 default: en;;

 language: en;;

 ;;

end:

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 263

Revision date: 4/25/2023 Print date: 10/4/2023

X2.12 MLM for Doses Calculation

maintenance:

 title: Doses Calculation Theophylline - fuzzy;;

 mlmname: dose_calculation_theophylline_fuzzy;;

 arden: version 2.9;;

 version: ;;

 institution: ;;

 author: ;;

 specialist: ;;

 date: 2012-07-10;;

 validation: testing;;

library:

 purpose: calculates the suggested daily doses based on the patients age;;

 explanation: ;;

 keywords: ;;

 citations:
http://library.buffalo.edu/libraries/projects/cases/drug_dosing/drug_dosing_notes.htm

 ;;

knowledge:

 type: data_driven;;

 data: ///

 patientAge := argument;

AgeGroup := linguistic variable [young, middleAged, old];

 ;;

 evoke: ;;

 logic: ///////////////////////////////////////

age := new AgeGroup;

// Age less than 20 years old:

age.young := fuzzy set (0 years, truth value 1), (19 year, truth value 1), (20 years,
truth value 0);

// Age more than 20 years old and less than 40 years old:

age.middleAge := fuzzy set (19 years, truth value 0), (20 years, truth value 1), (39
years, truth value 1), (40 years, truth value 0);

 // Age greater than 40 years old:

age.old := fuzzy set (39 years, truth value 0), (40 years, truth value 1);

// Theophylline Dose

if patientAge is equal age.young then

 dose := 8;

elseif patientAge is equal age.middleAged then

 dose := 15;

elseif patientAge is equal age.old then

 dose := 20;

endif;

 conclude true;

 ;;

 action: ///////////////////////////////////////

 write dose;

 ;;

resources:

 default: en;;

Arden Syntax for Medical Logic Systems

Page 264 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

 language: en;;

;;

end:

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 265

Revision date: 4/25/2023 Print date: 10/4/2023

X3 SUMMARY OF CHANGES

X3.1 Summary of Changes from the 1992 Standard (Version 1) to Version 2

• Clarification of many details of operator definitions.

• Arden syntax version slot required. (6.1.3)

• Citations must be numbered, and can be classified as supporting or refuting. (6.2.4)

• Specification of Links slot (6.2.5)

• Times can be constructed from durations via + operator (7.1.12)

• Triggertime is the time the MLM was triggered (8.4.5)

• Query retrieval order is not necessarily by primary time (8.9.2)

• Interface statement for using external functions (11.2.16)

• Single-line comments may be introduced with "//". (7.1.19)

• The filename slot has been renamed to mlmname. (6.1.2)

• Some new operators have been introduced:

➢ sort (9.2.4)

➢ reverse (9.12.21)

➢ format (9.8.2)

➢ earliest, latest (9.12.17, 9.12.16)

➢ floor, ceiling, truncate, round (9.16.11, 9.16.12, 9.16.13, 9.16.14)

➢ index (...[...]) (9.12.18)

➢ year, month, day, hour, minute, second field extraction (9.10.7, 9.10.8, 9.10.9, 9.10.10, 9.10.11,

9.10.12)

➢ seqto (9.12.20)

➢ string, extract characters (9.8.3, 9.12.19)

• Operators which select from lists may be annotated to return indexes instead of the elements. (9.12.18)

• As number operator which converts strings and Booleans to numbers. (9.20.1)

• Some restrictions have been removed (e.g., double semi-colon inside strings).

• The call expression and statement can now pass multiple arguments; arguments may also be passed

from an action slot. (10.2.5, 11.2.5, 13.2.2, 13.2.5)

• Looping constructs have been added: for loop, while loop. (10.2.5.10, 10.2.6.1)

• The continue statement may have an unless added to it (this a readability aid).

• A new form of conditional execution, by allowing unless in a conclude statement.

• The read ... where ... no longer requires parentheses.

• A read query may specify a sort order (different from the default of chronological by primary time).

Arden Syntax for Medical Logic Systems

Page 266 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

X3.2 Summary of Changes from Version 2 to Version 2.1

• A structured message for the write statement, represented as a Document Type Definition to be

encoded in the Extensible Markup Language (XML), has been included. (A1.2.2.4)

• The in operator is now a synonym for is in; similarly, not in is synonymous with is not in. (9.6.23)

• Occur/occurs/occurred at is now synonymous with occur/occurs/occurred equal. (9.7.11)

• The syntax from <time> is now synonymous with after <time>. (9.10.4)

• A period punctuation mark (".") now is permissible in the Mlmname slot. (6.1.2)

• New reserved word currenttime returns the system time at any point during an MLM’s execution.

(8.4.6)

• Six new string-handling operators are now available. These include length (9.8.5), uppercase (9.8.6),

lowercase (9.8.7), trim (9.8.8), find…in string (9.8.9), and substring…characters from (9.8.10).

• The where trigger statement has been removed.

• Added new code for Arden Syntax version slot—Version 2.1—to distinguish Version 2 and Version 2.1

compliant MLMs.

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 267

Revision date: 4/25/2023 Print date: 10/4/2023

X3.3 Summary of Changes from Version 2.1 to Version 2.5

The following relate to new Object capabilities:

Added new sections:

• 10.2.7, New statement.

• 11.2.1.9, Read As statement.

• 11.2.5.2 Message As statement

• 11.2.5.6 Destination As statement

• 11.2.13, Object statement.

• 10.2.1.1, Attribute assignment statement.

• 9.18, Dot notation (attribute reference)

• 9.19, Clone operator (attribute reference)

• 8.10, Object data type

• Annex A6, Objects in Arden: rationale, details, etc.

Section A4.3, new operators is object, is not object, is <object-name>, is not <object-name> were added.

The following updates relate to new recommendations for formatting structured citations and links

• 6.2.4, Citations slot now recommends ANSI/NISO OpenURL format for structured citations

• 6.2.5, Links slot now recommends ANSI/NISO OpenURL format for structured links

• Annex A1, XML schema for MLMs replaces DTD

The following updates relate to new recommendations for representing MLMs using XML

• Appendix X1, XML schema for structured write replaces DTD for structured write

• Appendix X2, XML schema for MLMs added

Annex A1 Backus-Naur Form updated to include new operators, statements, and correct errors from

previous versions

Updated B/N forms for:

• <data_assign_phrase>

• <expr_factor>

• <logic_assignment> (fixed a problem in 2.1 B/N form relating to calling MLMs

 that return multiple values)

• <identifier_becomes>

• <unary_comp_op>

• <data_assignment>

• <expr_function>

• <of_noread_func_op>

Arden Syntax for Medical Logic Systems

Page 268 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

These B/N Forms were added:

• <object_definition>

• <object_attribute_list>

• <new_object_phrase>

• <identifier_or_object_ref>

• <expr_attribute_from>

• Annex A2 Reserved Words updated to include new operators and statements

• Annex A4 Operator Precedence and Associativity updated to include new operators

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 269

Revision date: 4/25/2023 Print date: 10/4/2023

X3.4 Summary of Changes from Version 2.5 to 2.6

• 5.1 Character set allows UNICODE encoding within certain limitations

• 6.2.5 Changes to structured version of links slot.

• 6.4 Resource category defines text resources for specific languages

• 7.1.11 Time of day constants

• 8.11 Time-of-day data type

• 8.12 Day-of-week data type

• 9.1.5 Time of day handling

• 9.6.21 Is [not] time of day

• 9.10.5 Time of day operator

• 9.10.6 Day of week operator

• 9.8.11 Localized operator (unary)

• 9.8.12 Localized operator (binary)

• 9.17.3 At

• 11.2.15 Extension of include statement to include resources

• X3 Selected language and country codes for use with resource category slots.

This version features new data types and operators to represent time-of-day and day-of-week. In addition, new

capabilities have been added to let an MLM report messages in a variety of languages. The modifications include:

Arden Syntax for Medical Logic Systems

Page 270 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

X3.5 Summary of Changes from Version 2.6 to 2.7

• 9.17.3 AT (time) changed to ATTIME to remove need for precedence rules to proper parse use

of

 AT (time) in write statement with destination.

• 10.2.1.2 Enhanced Assignment Statement changed to support directly assigning to nested

attributes

 of objects and specific elements in a list

• 10.2.4.10 Enhanced Assignment in Call Statement

• 10.2.7.1 New Statement with Named Initializer (objects)

• Evoke slot chapter reorganized and rewritten

• Changes to BNF to reflect updates to text of standard and fix typographical errors

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 271

Revision date: 4/25/2023 Print date: 10/4/2023

X3.6 Summary of Editorial Corrections of ANSI/HL7 Arden V2.7-2008 December 10, 2008

• TOC Updated numbering of sections 11.2.10 to 11.2.18 in the table of contents

• 9.1.3 Added “Each operator must apply the here described list handling first (if applicable) before the

specific list handling as described in the respective operator description is applied.” to make the

correct application of list handling clearer.

• 9.1.3.4 Removed … matches pattern … because this does not belong to this chapter.

• 9.1.3.4 added missing … from … operator

• 9.3.1 Correction of first example since the stated operator … is within … after … does not exist, … is

within … following … must be used.

• 9.4.1 Type constraint updated because … or … is also applicable to lists.

• 9.7 Several “occured” changed to “occurred”.

• 9.8.1 Corrected %z to %s because there is no such operator %z.

• 9.8.4 2nd type constraint removed. <k:list of strings> means a list with k elements of “list of strings”,

which is a list of lists and not allowed in Arden Syntax.

• 9.9.7 Type constraint corrected to ensure that the right side of the … ** … operator is not a list.

• 9.12.19 Updated the type constraint for extract characters operator to ensure that the list of arguments

is of type string.

• 10.2.1.2 Operator corrected (element instead of index), corrected examples (“msg” instead of

“message”, “message” not allowed as variable name)

• 10.2.7 Definition of non-terminal <object-identifier> added.

• 11.2.5 Removed “[...] If the MLM is evoked instead of called, all the arguments are treated as null.

[...]” since this sentence is in contradiction with Section 10.2.4.6.

• 11.2.8 to 11.2.18 Updated numbering of sections.

• A1 BNF expression for <read_where> updated with missing “<” and “>”.

• A1 BNF expression for <evoke_statement> updated with the missing non-terminal <delayed_evoke>

• A1 BNF expression for <delayed_evoke> updated with the missing quotation marks.

• A1 BNF expression for <relative_evoke_time_expr> updated, since this non-terminal was still using

“AT” instead of “ATTIME”

• A2 arccos instead of arcos

• A4 Operators added to precedence groups: 9.16.10, 9.16.14

• A4 arccos instead of arcos

• A5.1 Some letters must be lowercase instead of using them in uppercase twice.

Arden Syntax for Medical Logic Systems

Page 272 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

X3.7 Summary of Changes from Version 2.7 with Editorial Corrections to 2.8

• 3.2.1, Removed the “a point in absolute time” term

• 6.1.2, Added the minus sign, since the BNF (non-terminal <mlmname_text_rest>) allows this sign

inside of an MLM name

• 6.1.7, Changed slot type to “textual list” since the informal description claims the same format as the

author slot

• 6.1.8, Added short term, which makes clear that only the complete representation (given in the ISO) is

allowed

• 8.1, Added a sentence to make clear that null may have a primary time

• 8.4.1, Changed the granularity of time from infinitesimal to implementation specific (beyond

milliseconds)

• 9.1.2.2, Additional data type “times” introduced, which subsumes time and time-of-day

• 9.1.2.2, Added “time-of-day” within the types: any-type, non-null, and ordered

• 9.1.3.1, Added the operators “… As Number”, “… As String”, and “… As Time” to the general list

handling

• 9.1.3.4, Added the operators “Replace Year Of … With”, “Replace Month Of … With”, “Replace

Day Of … With”, “Replace Hour Of … With”, “Replace Minute Of … With”, and “Replace

Second Of … With” to the general list handling

• 9.1.3.6, Added the operators “Index Of … From …”, “Add … To …”, “At Least … From …”, and

“At Most … From …” to the general list handling

• 9.1.3.7, Added the “Remove … From …” operator to the general list handling

• 9.2.4, Added the “Using …” modifier as extension to the sort operator. This modifier will allow to sort

lists by any complex calculation

• 9.2.5, Added new operator “Add … To … [At …]” for simple list manipulation by insertion of

elements at arbitrary positions

• 9.2.6, Added new operator “Remove … From …” for simple removing arbitrary elements from a list

• 9.6.7, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.6.8, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.6.9, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.6.10, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.6.12, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.6.13, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.6.14, Added 2 sentences to make the null handling of the “… Is [Not] In …” operator clearer

• 9.7.2, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.7.3, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.7.4, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.7.5, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 273

Revision date: 4/25/2023 Print date: 10/4/2023

• 9.7.6, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.7.9, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.7.10, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.7.11, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.8.13, Added new operator “As String” to convert any data into a string

• 9.9.1, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.9.3, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.10.1, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.10.2, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.10.4, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.10.7, Moved operator “Extract Year” from section 9.11.2

• 9.10.8, Moved operator “Extract Month” from section 9.11.4

• 9.10.9, Moved operator “Extract Day” from section 9.11.7

• 9.10.10, Moved operator “Extract Hour” from section 9.11.9

• 9.10.10, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-

day values are also allowed

• 9.10.11, Moved operator “Extract Minute” from section 9.11.11

• 9.10.11, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-

day values are also allowed

• 9.10.12, Moved operator “Extract Second” from section 9.11.13

• 9.10.12, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-

day values are also allowed

• 9.10.13, Added new operator “Replace Year [Of] … With” to set the year part of a given date

• 9.10.14, Added new operator “Replace Month [Of] … With” to set the month part of a given date

• 9.10.15, Added new operator “Replace Day [Of] … With” to set the day part of a given date

• 9.10.16, Added new operator “Replace Hour [Of] … With” to set the hour part of a given date

• 9.10.17, Added new operator “Replace Minute [Of] … With” to set the minute part of a given date

• 9.10.18, Added new operator “Replace Second [Of] … With” to set the second part of a given date

• 9.12.3, Added a sentence to make clear what the exists operator does if the parameter is a single item

• 9.12.4, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.12.5, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day

values are also allowed

• 9.12.9, Added the ability to use the “using” modifier, too

• 9.12.10, Added the ability to use the “using” modifier, too

• 9.12.13, Added the optional keyword “IsTrue”

Arden Syntax for Medical Logic Systems

Page 274 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

• 9.12.14, Added the optional keyword “AreTrue”

• 9.12.15, Added the optional keyword “IsTrue”

• 9.12.16, Added a sentence to make clear what happens if there is more than one element with the latest

primary time

• 9.12.16, Added the ability to use the “using” modifier, too

• 9.12.17, Added a sentence to make clear what happens if there is more than one element with the

earliest primary time

• 9.12.17, Added the ability to use the “using” modifier, too

• 9.12.20, Corrected an example (added brackets) since seqto operator has higher precedence than unary

minus

• 9.13.2, Corrected the operators type constraint, since the formal description only allows single times as

first parameter

• 9.13.4, Added new operator “Index Of … From …” to find the index of a specific list element

• 9.13.5, Added the “At Least … [IsTrue|AreTrue] From …” operator to determine if a list contains at

least N elements which are true

• 9.13.6, Added the “At Most … [IsTrue|AreTrue] From …” operator to determine if a list contains at

most N elements which are true

• 9.14.2, Added the ability to use the “using” modifier, too

• 9.14.3, Added the ability to use the “using” modifier, too

• 9.14.6, Added new operator “Sublist … Elements [Starting at …] From …” to extract sub-lists from

given data lists

• 9.14.7, Adjusted the second type constraint such that the operator can handle lists of time-of-day

values and added an example

• 9.14.8, Adjusted the second type constraint such that the operator can handle lists of time-of-day

values and added an example

• 9.14.11, Added the ability to use the “using” modifier, too

• 9.14.12, Added the ability to use the “using” modifier, too

• 9.16.10, Corrected the first two examples (added brackets) since int operator has higher precedence

than unary minus

• 9.16.12, Corrected the first two examples (added brackets) since ceiling operator has higher

precedence than unary minus

• 9.16.13, Corrected the first two examples (added brackets) since truncate operator has higher

precedence than unary minus

• 9.16.14, Corrected the last three examples (added brackets) since round operator has higher

precedence than unary minus

• 9.17.1, Added a sentence to make clear what happens if a non-time value is used for the assignment

• 9.17.4, Added new operator “As Time” to convert a string into a time data type

• 9.18.3, Changed the operators type constraint such that only one object can be passed

• 10.2.1, Changed the description such that it will be clear that a re-assignment is allowed nowhere

outside of the data slot

• 10.2.3, Added the “Switch-Case” statement for simple distinction of different states of a variable

• 10.2.3.1, Added a section to describe the “Simple Switch-Case” statement

• 10.2.3.2, Added a section to describe the “Switch-Case-Default” statement

• 10.2.6.1, Added the possibility to use the terminal “BreakLoop” for aborting a while loop

• 10.2.7.1, Added the possibility to use the terminal “BreakLoop” for aborting a for loop

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 275

Revision date: 4/25/2023 Print date: 10/4/2023

• 11.2.3.1, Added a sentence to describe the default Boolean value of a variable that represents an event

• 11.2.12, Added the “Switch-Case” statement to the data slot, too

• 11.2.14, Added a reference to the breakloop statement

• 11.2.15, Added a reference to the breakloop statement

• 11.2.19, Added MLM, event, and interface variable to the listing, since section 10.2.5.2 claims that

they are also included

• 12.2.4, Added the “Switch-Case” statement to the action slot, too

• 12.2.6, Added a reference to the breakloop statement

• 12.2.7, Added a reference to the breakloop statement

• A1 BNF, Added version 2.7 and 2.8 to the non-terminal and <arden_version>

• A1 BNF, added multiple non-terminals (<action_switch>, <logic_switch>, and <data_switch>) and

added them to the general statements for the data, action, and logic slot to allow switch statements in

all of these slots

• A1 BNF, Added the terminal “BREAKLOOP” to the non-terminals <logic_statement>,

<data_statement>, and <action_statement>

• A1 BNF, Adjusted non-terminals <identifier_becomes> and <identifier_or_object_ref> to allow

the enhanced assignment statements described in 10.2.1.2

• A1 BNF, Added using modifier to the non-terminal <expr_function> and to the non-terminal
<expr_sort>

• A1 BNF, Added the new operator “Add … To …” to the non-terminal <expr_sort> and inserted a new

non-terminal <expr_add_list>

• A1 BNF, Added the new operator “Remove … From …” as non-terminal <expr_remove_list>

• A1 BNF, Added an additional “… Formatted With …” line to the non-terminal <expr_string> to

allow complex format strings

• A1 BNF, Removed the terminals “Uppercase” and “Lowercase” from the non-terminal

<of_noread_func_op> and added them to the non-terminal <expr_string> as non-terminal

<case_option>

• A1 BNF, Added non-terminal <expr_attime> to prevent infinite loops while parsing attime statements

• A1 BNF, Added alternative non-terminal to the BNF-expression <expr_duration>

• A1 BNF, Added the new operators “Replace <Timepart> Of … With …” to the non-terminal

<expr_funtion>

• A1 BNF, Added the at least and the at most operator as non-terminal <at_least_most_op> to the non-

terminal <expr_function>

• A1 BNF, Added the “Index Of … from … “ operator to the non-terminal <expr_function>

• A1 BNF, Added the sublist operator to the non-terminal <expr_function> by adding the non-terminal
<expr_sublist_from>

• A1 BNF, Added the optional keywords “IsTrue” and “AreTrue” to the operators no, any and all in the

non-terminal <of_noread_func_op>

• A1 BNF, Added the new operator “… As Time” to the non-terminal <as_func_op>

• A1 BNF, Added the new operator “… As String” to the non-terminal <as_func_op>

• A1 BNF, Added an additional non-terminal <timepart>

• A1 BNF, Changed the non-terminal <delayed_evoke> to fit the informal description which does allow

only simple duration statements on the left side of constant time trigger statements

• A1, BNF, Change description of the <plainstring> non-terminal since both, the regular expression

and the informal description (7.1.6) does allow “;;” in a string

• A1 BNF, Added non-terminal <seconds> and adjusted the <time_of_day> non-terminal definition

Arden Syntax for Medical Logic Systems

Page 276 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

• A2, Added the following words to the list of reserved words: add, aretrue, breakloop, case, elements,

istrue, least, most, remove, replace, sublist, switch, using

• A4, Added the element operator

• A4, Added the unary comma operator to the list of precedence

• A4, Added the “Add … To … [At …]” operator

• A4, Added the “Remove … From …” operator

• A4, Removed binary “… Round …” operator, which is not defined in the specification

• A4, Added the “Sublist … elements [Starting At …] From …” operator in its two occurrences

• A4, Added the “Index Of … Within …” operator

• A4, Added the “At Least …” operator

• A4, Added the “At Most …” operator

• A4, Added the “Replace <timepart> Of … With …” operators

• A4, Added “… Seqto …” operator as new group at the end of the list

• A4, Added new precedence group for “… As Number”, “… As Time”, and “… As String”

• A4, Split some precedence groups since operators with different associativity should not be in the same

precedence group

• A4, Added the operators extended by the using modifier

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 277

Revision date: 4/25/2023 Print date: 10/4/2023

X3.8 Summary of Changes from Version 2.8 to 2.9

• 6.4, changed resources category definition from optional to required, stating that in former versions

this category is optional and a default value is used

• 8.13, new data type Truth Value which is a generalization of Boolean

• 8.14, new fuzzy data type section which contains a set of data types to express fuzzy sets

• 8.15, added applicability, similar to "primary time" a new subcomponent is added which allows to

express the applicability of a value

• 9.1.2.2, changed some type categories and added some new type categories to allow to use them in the

operator signatures

• 9.1.3, added the new operators to list handling explanation

• 9.1.6, added general applicability handling (similar to primary time handling)

• 9.2.4, sort operator adjusted to be able to sort a list by the applicability of the values

• 9.4.1, adjusted the or operator to handle truth values

• 9.4.2, adjusted the and operator to handle truth values

• 9.4.3, adjusted the not operator to handle truth values

• 9.5.4, adjusted the <= operator to handle a crisp and a fuzzy data type

• 9.5.5, adjusted the >= operator to handle a crisp and a fuzzy data type

• 9.6.14, the is [not] in operator is now able to handle a crisp and a fuzzy data type to find the mapping

of the crisp value to the given fuzzy set

• 9.6.27, new operator is[not] fuzzy to check a value if it is fuzzy or not

• 9.6.28, new operator is[not] crisp to check a value if it is crisp or not

• 9.13.5, adjusted the at least operator to handle truth values in a list

• 9.13.6, adjusted the at most operator to handle truth values in a list

• 9.19, new section fuzzy operators to store all operators on fuzzy sets

• 9.19.1, added new operator fuzzy set ... which is able to create fuzzy sets

• 9.19.2, added new operator ... fuzzified by ... which is able to create simple triangular fuzzy sets

• 9.19.3, added new operator defuzzified ... which defuzzifies a fuzzy set

• 9.19.4, added new operator applicability [of] ... to access a values applicability (and to set it)

• 9.20, new section type conversion operators which contains all type conversion operators

• 9.20.1, the as number operator moved from 9.16.17

• 9.20.2, the as time operator moved from 9.17.4

• 9.20.3, the as string operator moved from 9.8.13

• 9.20.4, added new operator as truth value which converts a number into a truth value

• 10.2.2, adjusting the if-then-statements to describe what happens if the condition expression evaluates

to a truth value

• 10.2.3, adjusting the switch-statements to describe what happens if the condition expression evaluates

to a truth value

• 10.2.8, added reference to the linguistic variable definition which is a special object type

• 11.2.18, added the linguistic variable statement which describes an object with only fuzzy sets as

fields

• A1, changes to the BNF to reflect the new operators and changes to the existing statements

• A2, added reserved words: aggregate, applicability, crisp, defuzzified, endswitch, fuzzified, fuzzy,

linguistic, set, truth, value, variable

• A4, added the new operators

Arden Syntax for Medical Logic Systems

Page 278 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

X3.9 Summary of Changes from Version 2.9 to 2.10

• A1: Moved to A1.1 and created parent chapter to explain that either BNF or XML can be used

• X1: Moved non-normative appendix X1 to the normative appendix A1.2

Arden Syntax for Medical Logic Systems

© 2023 Health Level Seven International, Inc. All rights reserved. Page 279

Revision date: 4/25/2023 Print date: 10/4/2023

X3.10 Summary of Changes from Version 2.10 to 3.0

• Title: Updated version number and revision date

• 6.3.2: Section regarding FHIR support in the Data Slot

• 7.1.18: Section regarding FHIR resource mapping in Mapping Clauses, links to 11.2.1 and 11.2.2

• 8.9: Specifying that FHIR query results are constrained by standard Query rules (Primary Time, Patient

relation, …) but in their execution follow HL7 FHIR read API

• 8.9.1: Primary time is retrieved from a specific field for each FHIR resource

• 8.10: FHIR resource based objects can be defined using NEW operator (not curly braces)

• 9.6.14: Special case when using Is In with FHIR Valueset in WHERE clause

• 11.2.1: Expand READ WHERE <constraint> clause to any constraint, chainable by logical operators

• 11.2.2: Special case READ AS <fhir-object-type> read statement when using FHIR object mapping

• A1 BNF: Adjusted non-terminal <data_assign_phrase> to allow the FHIR assignment statements

described in Section 12

Added new sections

• 12: FHIR objects and FHIR search API can be used in Arden READ WHERE statements

• 12.1: Add introduction (FHIR version, FHIR support over curly braces, backwards compatibility and

clinical landscape)

• 12.2: Support FHIR 4.3.0, map patient link and primary time to FHIR resource fields

• 12.2.1: Depend pre-defined Arden-FHIR objects on their FHIR documentation

• 12.3: A patient resource must be available in an MLM, instantiation by FHIR link

• 12.4: Primary time shall be available for each fetched FHIR object

• 12.5.1 Pre-defined objects (Valueset object)

• 12.5.2: Environment Variables (Repository, CodeSystem and Valuesets), optional default value

• 12.5.3 Valueset definition

• 12.6: Mapping of conditional READ statements (WHERE clause) to FHIR search API parameters

• 12.6.1: Schematic of Arden-FHIR read statements

• 12.6.2: Support AND, OR, NOT

• 12.6.3: Abstract search parameters available for each FHIR resource

• 12.6.4: Specific search parameters available for Encounter Resource

• 12.6.5: Specific search parameters available for Observation Resource

• 12.6.6: Specific search parameters available for Condition Resource

• 12.6.7: Specific search parameters available for Patient Resource

• 12.7: Full-fledged examples of READ statements mapping FHIR objects

• 12.7.1: Environment variables (Overwritable Resource/Service definitions)

• 12.7.2: Defining ValueSet from a terminology system and use in read statements

• 12.7.3: Example READ of a FHIR Observation object with FHIR search query

• 12.7.4: Example READ of a FHIR Condition object with FHIR search query

• 12.7.5: Example READ of a FHIR Encounter object with FHIR search query

• 12.7.6: Example READ of a FHIR Patient object with FHIR search query

• 12.7.7: Example of an Arden AND operator reflected in a FHIR search query

• 12.7.8: Example of an Arden OR operator reflected in a FHIR search query

• 12.7.9: Example of an Arden NOT operator reflected in a FHIR search query

Arden Syntax for Medical Logic Systems

Page 280 © 2023 Health Level Seven International, Inc. All rights reserved.

Revision date: 4/25/2023 Print date: 10/4/2023

REFERENCES

(1) HELP Frame Manual, 1991, LDS Hospital, 325 8th Ave., Salt Lake City, UT 84143.

(2) McDonald, C. J., Action-Oriented Decisions in Ambulatory Medicine, Chicago: Year Book Medical Publishers,

1981.

(3) Wirth, N., “What Can We Do About the Unnecessary Diversity of Notation for Syntactic Definitions?”,

Communications of the ACM, Vol. 20, 1977, pp. 822-823.

(4) UMLS Knowledge Sources, Experimental Edition, Bethesda, MD: National Library of Medicine, September

1990.

(5) International Committee of Medical Journal Editors, Special Report, “Uniform Requirements for Manuscripts

Submitted to Biomedical Journals”, The New England Journal of Medicine, Vol. 324, No. 6, 1991, pp. 424-428.

